Struct Local

Source
pub struct Local<'s, T>(/* private fields */)
where
    T: FromWorld + Send + 'static;
Expand description

A system local SystemParam.

A local may only be accessed by the system itself and is therefore not visible to other systems. If two or more systems specify the same local type each will have their own unique local. If multiple SystemParams within the same system each specify the same local type each will get their own distinct data storage.

The supplied lifetime parameter is the SystemParams 's lifetime.

§Examples

fn write_to_local(mut local: Local<usize>) {
    *local = 42;
}
fn read_from_local(local: Local<usize>) -> usize {
    *local
}
let mut write_system = IntoSystem::into_system(write_to_local);
let mut read_system = IntoSystem::into_system(read_from_local);
write_system.initialize(world);
read_system.initialize(world);

assert_eq!(read_system.run((), world), 0);
write_system.run((), world);
// Note how the read local is still 0 due to the locals not being shared.
assert_eq!(read_system.run((), world), 0);

A simple way to set a different default value for a local is by wrapping the value with an Option.

fn counter_from_10(mut count: Local<Option<usize>>) -> usize {
    let count = count.get_or_insert(10);
    *count += 1;
    *count
}
let mut counter_system = IntoSystem::into_system(counter_from_10);
counter_system.initialize(world);

// Counter is initialized at 10, and increases to 11 on first run.
assert_eq!(counter_system.run((), world), 11);
// Counter is only increased by 1 on subsequent runs.
assert_eq!(counter_system.run((), world), 12);

N.B. A Locals value cannot be read or written to outside of the containing system. To add configuration to a system, convert a capturing closure into the system instead:

struct Config(u32);
#[derive(Resource)]
struct MyU32Wrapper(u32);
fn reset_to_system(value: Config) -> impl FnMut(ResMut<MyU32Wrapper>) {
    move |mut val| val.0 = value.0
}

// .add_systems(reset_to_system(my_config))

Trait Implementations§

Source§

impl<'s, T> Debug for Local<'s, T>
where T: Debug + FromWorld + Send + 'static,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<'s, T> Deref for Local<'s, T>
where T: FromWorld + Send + 'static,

Source§

type Target = T

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<Local<'s, T> as Deref>::Target

Dereferences the value.
Source§

impl<'s, T> DerefMut for Local<'s, T>
where T: FromWorld + Send + 'static,

Source§

fn deref_mut(&mut self) -> &mut <Local<'s, T> as Deref>::Target

Mutably dereferences the value.
Source§

impl<'_s, T> ExclusiveSystemParam for Local<'_s, T>
where T: FromWorld + Send + 'static,

Source§

type State = SyncCell<T>

Used to store data which persists across invocations of a system.
Source§

type Item<'s> = Local<'s, T>

The item type returned when constructing this system param. See SystemParam::Item.
Source§

fn init( world: &mut World, _system_meta: &mut SystemMeta, ) -> <Local<'_s, T> as ExclusiveSystemParam>::State

Creates a new instance of this param’s State.
Source§

fn get_param<'s>( state: &'s mut <Local<'_s, T> as ExclusiveSystemParam>::State, _system_meta: &SystemMeta, ) -> <Local<'_s, T> as ExclusiveSystemParam>::Item<'s>

Creates a parameter to be passed into an ExclusiveSystemParamFunction.
Source§

impl<'s, 'a, T> IntoIterator for &'a Local<'s, T>
where T: FromWorld + Send + 'static, &'a T: IntoIterator,

Source§

type Item = <&'a T as IntoIterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = <&'a T as IntoIterator>::IntoIter

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> <&'a Local<'s, T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
Source§

impl<'s, 'a, T> IntoIterator for &'a mut Local<'s, T>
where T: FromWorld + Send + 'static, &'a mut T: IntoIterator,

Source§

type Item = <&'a mut T as IntoIterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = <&'a mut T as IntoIterator>::IntoIter

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> <&'a mut Local<'s, T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
Source§

impl<'a, T> SystemParam for Local<'a, T>
where T: FromWorld + Send + 'static,

Source§

type State = SyncCell<T>

Used to store data which persists across invocations of a system.
Source§

type Item<'w, 's> = Local<'s, T>

The item type returned when constructing this system param. The value of this associated type should be Self, instantiated with new lifetimes. Read more
Source§

fn init_state( world: &mut World, _system_meta: &mut SystemMeta, ) -> <Local<'a, T> as SystemParam>::State

Registers any World access used by this SystemParam and creates a new instance of this param’s State.
Source§

unsafe fn get_param<'w, 's>( state: &'s mut <Local<'a, T> as SystemParam>::State, _system_meta: &SystemMeta, _world: UnsafeWorldCell<'w>, _change_tick: Tick, ) -> <Local<'a, T> as SystemParam>::Item<'w, 's>

Creates a parameter to be passed into a SystemParamFunction. Read more
Source§

unsafe fn new_archetype( state: &mut Self::State, archetype: &Archetype, system_meta: &mut SystemMeta, )

For the specified Archetype, registers the components accessed by this SystemParam (if applicable).a Read more
Source§

fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)

Applies any deferred mutations stored in this SystemParam’s state. This is used to apply Commands during ApplyDeferred.
Source§

fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_>, )

Queues any deferred mutations to be applied at the next ApplyDeferred.
Source§

unsafe fn validate_param( state: &Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'_>, ) -> Result<(), SystemParamValidationError>

Validates that the param can be acquired by the get_param. Read more
Source§

impl<'s, T> SystemParamBuilder<Local<'s, T>> for LocalBuilder<T>
where T: FromWorld + Send + 'static,

Source§

fn build( self, _world: &mut World, _meta: &mut SystemMeta, ) -> <Local<'s, T> as SystemParam>::State

Registers any World access used by this SystemParam and creates a new instance of this param’s State.
Source§

fn build_state(self, world: &mut World) -> SystemState<P>

Create a SystemState from a SystemParamBuilder. To create a system, call SystemState::build_system on the result.
Source§

impl<'s, T> ReadOnlySystemParam for Local<'s, T>
where T: FromWorld + Send + 'static,

Auto Trait Implementations§

§

impl<'s, T> Freeze for Local<'s, T>

§

impl<'s, T> RefUnwindSafe for Local<'s, T>
where T: RefUnwindSafe,

§

impl<'s, T> Send for Local<'s, T>

§

impl<'s, T> Sync for Local<'s, T>
where T: Sync,

§

impl<'s, T> Unpin for Local<'s, T>

§

impl<'s, T> !UnwindSafe for Local<'s, T>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

Source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T, C, D> Curve<T> for D
where C: Curve<T> + ?Sized, D: Deref<Target = C>,

Source§

fn domain(&self) -> Interval

The interval over which this curve is parametrized. Read more
Source§

fn sample_unchecked(&self, t: f32) -> T

Sample a point on this curve at the parameter value t, extracting the associated value. This is the unchecked version of sampling, which should only be used if the sample time t is already known to lie within the curve’s domain. Read more
Source§

fn sample(&self, t: f32) -> Option<T>

Sample a point on this curve at the parameter value t, returning None if the point is outside of the curve’s domain.
Source§

fn sample_clamped(&self, t: f32) -> T

Sample a point on this curve at the parameter value t, clamping t to lie inside the domain of the curve.
Source§

impl<C, T> CurveExt<T> for C
where C: Curve<T>,

Source§

fn sample_iter( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = Option<T>>

Sample a collection of n >= 0 points on this curve at the parameter values t_n, returning None if the point is outside of the curve’s domain. Read more
Source§

fn sample_iter_unchecked( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>

Sample a collection of n >= 0 points on this curve at the parameter values t_n, extracting the associated values. This is the unchecked version of sampling, which should only be used if the sample times t_n are already known to lie within the curve’s domain. Read more
Source§

fn sample_iter_clamped( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>

Sample a collection of n >= 0 points on this curve at the parameter values t_n, clamping t_n to lie inside the domain of the curve. Read more
Source§

fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>
where F: Fn(T) -> S,

Create a new curve by mapping the values of this curve via a function f; i.e., if the sample at time t for this curve is x, the value at time t on the new curve will be f(x).
Source§

fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
where F: Fn(f32) -> f32,

Create a new Curve whose parameter space is related to the parameter space of this curve by f. For each time t, the sample from the new curve at time t is the sample from this curve at time f(t). The given domain will be the domain of the new curve. The function f is expected to take domain into self.domain(). Read more
Source§

fn reparametrize_linear( self, domain: Interval, ) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>

Linearly reparametrize this Curve, producing a new curve whose domain is the given domain instead of the current one. This operation is only valid for curves with bounded domains. Read more
Source§

fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
where C: Curve<f32>,

Reparametrize this Curve by sampling from another curve. Read more
Source§

fn graph(self) -> GraphCurve<T, Self>

Create a new Curve which is the graph of this one; that is, its output echoes the sample time as part of a tuple. Read more
Source§

fn zip<S, C>( self, other: C, ) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>
where C: Curve<S>,

Create a new Curve by zipping this curve together with another. Read more
Source§

fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>
where C: Curve<T>,

Create a new Curve by composing this curve end-to-start with another, producing another curve with outputs of the same type. The domain of the other curve is translated so that its start coincides with where this curve ends. Read more
Source§

fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>

Create a new Curve inverting this curve on the x-axis, producing another curve with outputs of the same type, effectively playing backwards starting at self.domain().end() and transitioning over to self.domain().start(). The domain of the new curve is still the same. Read more
Source§

fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>

Create a new Curve repeating this curve N times, producing another curve with outputs of the same type. The domain of the new curve will be bigger by a factor of n + 1. Read more
Source§

fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>

Create a new Curve repeating this curve forever, producing another curve with outputs of the same type. The domain of the new curve will be unbounded. Read more
Source§

fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>

Create a new Curve chaining the original curve with its inverse, producing another curve with outputs of the same type. The domain of the new curve will be twice as long. The transition point is guaranteed to not make any jumps. Read more
Source§

fn chain_continue<C>( self, other: C, ) -> Result<ContinuationCurve<T, Self, C>, ChainError>
where T: VectorSpace, C: Curve<T>,

Create a new Curve by composing this curve end-to-start with another, producing another curve with outputs of the same type. The domain of the other curve is translated so that its start coincides with where this curve ends. Read more
Source§

fn samples( &self, samples: usize, ) -> Result<impl Iterator<Item = T>, ResamplingError>

Extract an iterator over evenly-spaced samples from this curve. Read more
Source§

fn by_ref(&self) -> &Self

Borrow this curve rather than taking ownership of it. This is essentially an alias for a prefix &; the point is that intermediate operations can be performed while retaining access to the original curve. Read more
Source§

fn flip<U, V>(self) -> impl Curve<(V, U)>
where Self: CurveExt<(U, V)>,

Flip this curve so that its tuple output is arranged the other way.
Source§

impl<C, T> CurveResampleExt<T> for C
where C: Curve<T> + ?Sized,

Source§

fn resample<I>( &self, segments: usize, interpolation: I, ) -> Result<SampleCurve<T, I>, ResamplingError>
where I: Fn(&T, &T, f32) -> T,

Resample this Curve to produce a new one that is defined by interpolation over equally spaced sample values, using the provided interpolation to interpolate between adjacent samples. The curve is interpolated on segments segments between samples. For example, if segments is 1, only the start and end points of the curve are used as samples; if segments is 2, a sample at the midpoint is taken as well, and so on. Read more
Source§

fn resample_auto( &self, segments: usize, ) -> Result<SampleAutoCurve<T>, ResamplingError>

Resample this Curve to produce a new one that is defined by interpolation over equally spaced sample values, using automatic interpolation to interpolate between adjacent samples. The curve is interpolated on segments segments between samples. For example, if segments is 1, only the start and end points of the curve are used as samples; if segments is 2, a sample at the midpoint is taken as well, and so on. Read more
Source§

fn resample_uneven<I>( &self, sample_times: impl IntoIterator<Item = f32>, interpolation: I, ) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
where I: Fn(&T, &T, f32) -> T,

Resample this Curve to produce a new one that is defined by interpolation over samples taken at a given set of times. The given interpolation is used to interpolate adjacent samples, and the sample_times are expected to contain at least two valid times within the curve’s domain interval. Read more
Source§

fn resample_uneven_auto( &self, sample_times: impl IntoIterator<Item = f32>, ) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>

Resample this Curve to produce a new one that is defined by automatic interpolation over samples taken at the given set of times. The given sample_times are expected to contain at least two valid times within the curve’s domain interval. Read more
Source§

impl<T, C> CurveWithDerivative<T> for C
where T: HasTangent, C: SampleDerivative<T>,

Source§

fn with_derivative(self) -> SampleDerivativeWrapper<C>

This curve, but with its first derivative included in sampling. Read more
Source§

impl<T> Downcast<T> for T

Source§

fn downcast(&self) -> &T

Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<S> FromSample<S> for S

Source§

fn from_sample_(s: S) -> S

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

Source§

fn into_sample(self) -> T

Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T, C, D> SampleDerivative<T> for D
where T: HasTangent, C: SampleDerivative<T> + ?Sized, D: Deref<Target = C>,

Source§

fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<T>

Sample this curve at the parameter value t, extracting the associated value in addition to its derivative. This is the unchecked version of sampling, which should only be used if the sample time t is already known to lie within the curve’s domain. Read more
Source§

fn sample_with_derivative(&self, t: f32) -> Option<WithDerivative<T>>

Sample this curve’s value and derivative at the parameter value t, returning None if the point is outside of the curve’s domain.
Source§

fn sample_with_derivative_clamped(&self, t: f32) -> WithDerivative<T>

Sample this curve’s value and derivative at the parameter value t, clamping t to lie inside the domain of the curve.
Source§

impl<T> Source for T
where T: Deref, <T as Deref>::Target: Source,

Source§

type Slice<'a> = <<T as Deref>::Target as Source>::Slice<'a> where T: 'a

A type this Source can be sliced into.
Source§

fn len(&self) -> usize

Length of the source
Source§

fn read<'a, Chunk>(&'a self, offset: usize) -> Option<Chunk>
where Chunk: Chunk<'a>,

Read a chunk of bytes into an array. Returns None when reading out of bounds would occur. Read more
Source§

unsafe fn read_byte_unchecked(&self, offset: usize) -> u8

Read a byte without doing bounds checks. Read more
Source§

fn slice(&self, range: Range<usize>) -> Option<<T as Source>::Slice<'_>>

Get a slice of the source at given range. This is analogous to slice::get(range). Read more
Source§

unsafe fn slice_unchecked( &self, range: Range<usize>, ) -> <T as Source>::Slice<'_>

Get a slice of the source at given range. This is analogous to slice::get_unchecked(range). Read more
Source§

fn is_boundary(&self, index: usize) -> bool

Check if index is valid for this Source, that is: Read more
Source§

fn find_boundary(&self, index: usize) -> usize

For &str sources attempts to find the closest char boundary at which source can be sliced, starting from index. Read more
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

Source§

fn to_sample_(self) -> U

Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> Upcast<T> for T

Source§

fn upcast(&self) -> Option<&T>

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ConditionalSend for T
where T: Send,

Source§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

Source§

impl<T> Settings for T
where T: 'static + Send + Sync,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,