Struct HyperParameterTrainingJobDefinitionBuilder

Source
#[non_exhaustive]
pub struct HyperParameterTrainingJobDefinitionBuilder { /* private fields */ }
Expand description

Implementations§

Source§

impl HyperParameterTrainingJobDefinitionBuilder

Source

pub fn definition_name(self, input: impl Into<String>) -> Self

The job definition name.

Source

pub fn set_definition_name(self, input: Option<String>) -> Self

The job definition name.

Source

pub fn get_definition_name(&self) -> &Option<String>

The job definition name.

Source

pub fn tuning_objective(self, input: HyperParameterTuningJobObjective) -> Self

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.

Source

pub fn set_tuning_objective( self, input: Option<HyperParameterTuningJobObjective>, ) -> Self

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.

Source

pub fn get_tuning_objective(&self) -> &Option<HyperParameterTuningJobObjective>

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.

Source

pub fn hyper_parameter_ranges(self, input: ParameterRanges) -> Self

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

Source

pub fn set_hyper_parameter_ranges(self, input: Option<ParameterRanges>) -> Self

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

Source

pub fn get_hyper_parameter_ranges(&self) -> &Option<ParameterRanges>

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

The maximum number of items specified for Array Members refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.

Source

pub fn static_hyper_parameters( self, k: impl Into<String>, v: impl Into<String>, ) -> Self

Adds a key-value pair to static_hyper_parameters.

To override the contents of this collection use set_static_hyper_parameters.

Specifies the values of hyperparameters that do not change for the tuning job.

Source

pub fn set_static_hyper_parameters( self, input: Option<HashMap<String, String>>, ) -> Self

Specifies the values of hyperparameters that do not change for the tuning job.

Source

pub fn get_static_hyper_parameters(&self) -> &Option<HashMap<String, String>>

Specifies the values of hyperparameters that do not change for the tuning job.

Source

pub fn algorithm_specification( self, input: HyperParameterAlgorithmSpecification, ) -> Self

The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

This field is required.
Source

pub fn set_algorithm_specification( self, input: Option<HyperParameterAlgorithmSpecification>, ) -> Self

The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

Source

pub fn get_algorithm_specification( &self, ) -> &Option<HyperParameterAlgorithmSpecification>

The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

Source

pub fn role_arn(self, input: impl Into<String>) -> Self

The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

This field is required.
Source

pub fn set_role_arn(self, input: Option<String>) -> Self

The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

Source

pub fn get_role_arn(&self) -> &Option<String>

The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

Source

pub fn input_data_config(self, input: Channel) -> Self

Appends an item to input_data_config.

To override the contents of this collection use set_input_data_config.

An array of Channel objects that specify the input for the training jobs that the tuning job launches.

Source

pub fn set_input_data_config(self, input: Option<Vec<Channel>>) -> Self

An array of Channel objects that specify the input for the training jobs that the tuning job launches.

Source

pub fn get_input_data_config(&self) -> &Option<Vec<Channel>>

An array of Channel objects that specify the input for the training jobs that the tuning job launches.

Source

pub fn vpc_config(self, input: VpcConfig) -> Self

The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Source

pub fn set_vpc_config(self, input: Option<VpcConfig>) -> Self

The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Source

pub fn get_vpc_config(&self) -> &Option<VpcConfig>

The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Source

pub fn output_data_config(self, input: OutputDataConfig) -> Self

Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

This field is required.
Source

pub fn set_output_data_config(self, input: Option<OutputDataConfig>) -> Self

Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

Source

pub fn get_output_data_config(&self) -> &Option<OutputDataConfig>

Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

Source

pub fn resource_config(self, input: ResourceConfig) -> Self

The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

Source

pub fn set_resource_config(self, input: Option<ResourceConfig>) -> Self

The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

Source

pub fn get_resource_config(&self) -> &Option<ResourceConfig>

The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.

Source

pub fn hyper_parameter_tuning_resource_config( self, input: HyperParameterTuningResourceConfig, ) -> Self

The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

Source

pub fn set_hyper_parameter_tuning_resource_config( self, input: Option<HyperParameterTuningResourceConfig>, ) -> Self

The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

Source

pub fn get_hyper_parameter_tuning_resource_config( &self, ) -> &Option<HyperParameterTuningResourceConfig>

The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).

Source

pub fn stopping_condition(self, input: StoppingCondition) -> Self

Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

This field is required.
Source

pub fn set_stopping_condition(self, input: Option<StoppingCondition>) -> Self

Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

Source

pub fn get_stopping_condition(&self) -> &Option<StoppingCondition>

Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

Source

pub fn enable_network_isolation(self, input: bool) -> Self

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Source

pub fn set_enable_network_isolation(self, input: Option<bool>) -> Self

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Source

pub fn get_enable_network_isolation(&self) -> &Option<bool>

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Source

pub fn enable_inter_container_traffic_encryption(self, input: bool) -> Self

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

Source

pub fn set_enable_inter_container_traffic_encryption( self, input: Option<bool>, ) -> Self

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

Source

pub fn get_enable_inter_container_traffic_encryption(&self) -> &Option<bool>

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

Source

pub fn enable_managed_spot_training(self, input: bool) -> Self

A Boolean indicating whether managed spot training is enabled (True) or not (False).

Source

pub fn set_enable_managed_spot_training(self, input: Option<bool>) -> Self

A Boolean indicating whether managed spot training is enabled (True) or not (False).

Source

pub fn get_enable_managed_spot_training(&self) -> &Option<bool>

A Boolean indicating whether managed spot training is enabled (True) or not (False).

Source

pub fn checkpoint_config(self, input: CheckpointConfig) -> Self

Contains information about the output location for managed spot training checkpoint data.

Source

pub fn set_checkpoint_config(self, input: Option<CheckpointConfig>) -> Self

Contains information about the output location for managed spot training checkpoint data.

Source

pub fn get_checkpoint_config(&self) -> &Option<CheckpointConfig>

Contains information about the output location for managed spot training checkpoint data.

Source

pub fn retry_strategy(self, input: RetryStrategy) -> Self

The number of times to retry the job when the job fails due to an InternalServerError.

Source

pub fn set_retry_strategy(self, input: Option<RetryStrategy>) -> Self

The number of times to retry the job when the job fails due to an InternalServerError.

Source

pub fn get_retry_strategy(&self) -> &Option<RetryStrategy>

The number of times to retry the job when the job fails due to an InternalServerError.

Source

pub fn environment(self, k: impl Into<String>, v: impl Into<String>) -> Self

Adds a key-value pair to environment.

To override the contents of this collection use set_environment.

An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

Source

pub fn set_environment(self, input: Option<HashMap<String, String>>) -> Self

An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

Source

pub fn get_environment(&self) -> &Option<HashMap<String, String>>

An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.

The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.

Source

pub fn build(self) -> HyperParameterTrainingJobDefinition

Consumes the builder and constructs a HyperParameterTrainingJobDefinition.

Trait Implementations§

Source§

impl Clone for HyperParameterTrainingJobDefinitionBuilder

Source§

fn clone(&self) -> HyperParameterTrainingJobDefinitionBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for HyperParameterTrainingJobDefinitionBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for HyperParameterTrainingJobDefinitionBuilder

Source§

fn default() -> HyperParameterTrainingJobDefinitionBuilder

Returns the “default value” for a type. Read more
Source§

impl PartialEq for HyperParameterTrainingJobDefinitionBuilder

Source§

fn eq(&self, other: &HyperParameterTrainingJobDefinitionBuilder) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for HyperParameterTrainingJobDefinitionBuilder

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,