#[non_exhaustive]pub struct CreateAutoMlJobInput {
pub auto_ml_job_name: Option<String>,
pub input_data_config: Option<Vec<AutoMlChannel>>,
pub output_data_config: Option<AutoMlOutputDataConfig>,
pub problem_type: Option<ProblemType>,
pub auto_ml_job_objective: Option<AutoMlJobObjective>,
pub auto_ml_job_config: Option<AutoMlJobConfig>,
pub role_arn: Option<String>,
pub generate_candidate_definitions_only: Option<bool>,
pub tags: Option<Vec<Tag>>,
pub model_deploy_config: Option<ModelDeployConfig>,
}
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.auto_ml_job_name: Option<String>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
input_data_config: Option<Vec<AutoMlChannel>>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
output_data_config: Option<AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
problem_type: Option<ProblemType>
Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
auto_ml_job_objective: Option<AutoMlJobObjective>
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
auto_ml_job_config: Option<AutoMlJobConfig>
A collection of settings used to configure an AutoML job.
role_arn: Option<String>
The ARN of the role that is used to access the data.
generate_candidate_definitions_only: Option<bool>
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
model_deploy_config: Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
Implementations§
source§impl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub fn auto_ml_job_name(&self) -> Option<&str>
pub fn auto_ml_job_name(&self) -> Option<&str>
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
sourcepub fn input_data_config(&self) -> &[AutoMlChannel]
pub fn input_data_config(&self) -> &[AutoMlChannel]
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .input_data_config.is_none()
.
sourcepub fn output_data_config(&self) -> Option<&AutoMlOutputDataConfig>
pub fn output_data_config(&self) -> Option<&AutoMlOutputDataConfig>
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
sourcepub fn problem_type(&self) -> Option<&ProblemType>
pub fn problem_type(&self) -> Option<&ProblemType>
Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
sourcepub fn auto_ml_job_objective(&self) -> Option<&AutoMlJobObjective>
pub fn auto_ml_job_objective(&self) -> Option<&AutoMlJobObjective>
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
sourcepub fn auto_ml_job_config(&self) -> Option<&AutoMlJobConfig>
pub fn auto_ml_job_config(&self) -> Option<&AutoMlJobConfig>
A collection of settings used to configure an AutoML job.
sourcepub fn generate_candidate_definitions_only(&self) -> Option<bool>
pub fn generate_candidate_definitions_only(&self) -> Option<bool>
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none()
.
sourcepub fn model_deploy_config(&self) -> Option<&ModelDeployConfig>
pub fn model_deploy_config(&self) -> Option<&ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
source§impl CreateAutoMlJobInput
impl CreateAutoMlJobInput
sourcepub fn builder() -> CreateAutoMlJobInputBuilder
pub fn builder() -> CreateAutoMlJobInputBuilder
Creates a new builder-style object to manufacture CreateAutoMlJobInput
.
Trait Implementations§
source§impl Clone for CreateAutoMlJobInput
impl Clone for CreateAutoMlJobInput
source§fn clone(&self) -> CreateAutoMlJobInput
fn clone(&self) -> CreateAutoMlJobInput
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for CreateAutoMlJobInput
impl Debug for CreateAutoMlJobInput
source§impl PartialEq for CreateAutoMlJobInput
impl PartialEq for CreateAutoMlJobInput
impl StructuralPartialEq for CreateAutoMlJobInput
Auto Trait Implementations§
impl Freeze for CreateAutoMlJobInput
impl RefUnwindSafe for CreateAutoMlJobInput
impl Send for CreateAutoMlJobInput
impl Sync for CreateAutoMlJobInput
impl Unpin for CreateAutoMlJobInput
impl UnwindSafe for CreateAutoMlJobInput
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more