Struct aws_sdk_sagemaker::types::AutoMlJobConfig
source · #[non_exhaustive]pub struct AutoMlJobConfig {
pub completion_criteria: Option<AutoMlJobCompletionCriteria>,
pub security_config: Option<AutoMlSecurityConfig>,
pub candidate_generation_config: Option<AutoMlCandidateGenerationConfig>,
pub data_split_config: Option<AutoMlDataSplitConfig>,
pub mode: Option<AutoMlMode>,
}
Expand description
A collection of settings used for an AutoML job.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.completion_criteria: Option<AutoMlJobCompletionCriteria>
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
security_config: Option<AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
candidate_generation_config: Option<AutoMlCandidateGenerationConfig>
The configuration for generating a candidate for an AutoML job (optional).
data_split_config: Option<AutoMlDataSplitConfig>
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
mode: Option<AutoMlMode>
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
Implementations§
source§impl AutoMlJobConfig
impl AutoMlJobConfig
sourcepub fn completion_criteria(&self) -> Option<&AutoMlJobCompletionCriteria>
pub fn completion_criteria(&self) -> Option<&AutoMlJobCompletionCriteria>
How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
sourcepub fn security_config(&self) -> Option<&AutoMlSecurityConfig>
pub fn security_config(&self) -> Option<&AutoMlSecurityConfig>
The security configuration for traffic encryption or Amazon VPC settings.
sourcepub fn candidate_generation_config(
&self,
) -> Option<&AutoMlCandidateGenerationConfig>
pub fn candidate_generation_config( &self, ) -> Option<&AutoMlCandidateGenerationConfig>
The configuration for generating a candidate for an AutoML job (optional).
sourcepub fn data_split_config(&self) -> Option<&AutoMlDataSplitConfig>
pub fn data_split_config(&self) -> Option<&AutoMlDataSplitConfig>
The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
sourcepub fn mode(&self) -> Option<&AutoMlMode>
pub fn mode(&self) -> Option<&AutoMlMode>
The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.
The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.
The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.
source§impl AutoMlJobConfig
impl AutoMlJobConfig
sourcepub fn builder() -> AutoMlJobConfigBuilder
pub fn builder() -> AutoMlJobConfigBuilder
Creates a new builder-style object to manufacture AutoMlJobConfig
.
Trait Implementations§
source§impl Clone for AutoMlJobConfig
impl Clone for AutoMlJobConfig
source§fn clone(&self) -> AutoMlJobConfig
fn clone(&self) -> AutoMlJobConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for AutoMlJobConfig
impl Debug for AutoMlJobConfig
source§impl PartialEq for AutoMlJobConfig
impl PartialEq for AutoMlJobConfig
impl StructuralPartialEq for AutoMlJobConfig
Auto Trait Implementations§
impl Freeze for AutoMlJobConfig
impl RefUnwindSafe for AutoMlJobConfig
impl Send for AutoMlJobConfig
impl Sync for AutoMlJobConfig
impl Unpin for AutoMlJobConfig
impl UnwindSafe for AutoMlJobConfig
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more