#[non_exhaustive]pub struct HyperParameterTuningJobConfig { /* private fields */ }
Expand description
Configures a hyperparameter tuning job.
Implementations§
source§impl HyperParameterTuningJobConfig
impl HyperParameterTuningJobConfig
sourcepub fn strategy(&self) -> Option<&HyperParameterTuningJobStrategyType>
pub fn strategy(&self) -> Option<&HyperParameterTuningJobStrategyType>
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
sourcepub fn strategy_config(&self) -> Option<&HyperParameterTuningJobStrategyConfig>
pub fn strategy_config(&self) -> Option<&HyperParameterTuningJobStrategyConfig>
The configuration for the Hyperband
optimization strategy. This parameter should be provided only if Hyperband
is selected as the strategy for HyperParameterTuningJobConfig
.
sourcepub fn hyper_parameter_tuning_job_objective(
&self
) -> Option<&HyperParameterTuningJobObjective>
pub fn hyper_parameter_tuning_job_objective(
&self
) -> Option<&HyperParameterTuningJobObjective>
The HyperParameterTuningJobObjective
specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
sourcepub fn resource_limits(&self) -> Option<&ResourceLimits>
pub fn resource_limits(&self) -> Option<&ResourceLimits>
The ResourceLimits
object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
sourcepub fn parameter_ranges(&self) -> Option<&ParameterRanges>
pub fn parameter_ranges(&self) -> Option<&ParameterRanges>
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
sourcepub fn training_job_early_stopping_type(
&self
) -> Option<&TrainingJobEarlyStoppingType>
pub fn training_job_early_stopping_type(
&self
) -> Option<&TrainingJobEarlyStoppingType>
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband
strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType
must be OFF
to use Hyperband
. This parameter can take on one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
sourcepub fn tuning_job_completion_criteria(
&self
) -> Option<&TuningJobCompletionCriteria>
pub fn tuning_job_completion_criteria(
&self
) -> Option<&TuningJobCompletionCriteria>
The tuning job's completion criteria.
sourcepub fn random_seed(&self) -> Option<i32>
pub fn random_seed(&self) -> Option<i32>
A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
source§impl HyperParameterTuningJobConfig
impl HyperParameterTuningJobConfig
sourcepub fn builder() -> Builder
pub fn builder() -> Builder
Creates a new builder-style object to manufacture HyperParameterTuningJobConfig
.
Trait Implementations§
source§impl Clone for HyperParameterTuningJobConfig
impl Clone for HyperParameterTuningJobConfig
source§fn clone(&self) -> HyperParameterTuningJobConfig
fn clone(&self) -> HyperParameterTuningJobConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl PartialEq<HyperParameterTuningJobConfig> for HyperParameterTuningJobConfig
impl PartialEq<HyperParameterTuningJobConfig> for HyperParameterTuningJobConfig
source§fn eq(&self, other: &HyperParameterTuningJobConfig) -> bool
fn eq(&self, other: &HyperParameterTuningJobConfig) -> bool
self
and other
values to be equal, and is used
by ==
.