pub struct Builder { /* private fields */ }
Expand description
A builder for HyperParameterTuningJobConfig
.
Implementations§
source§impl Builder
impl Builder
sourcepub fn strategy(self, input: HyperParameterTuningJobStrategyType) -> Self
pub fn strategy(self, input: HyperParameterTuningJobStrategyType) -> Self
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
sourcepub fn set_strategy(
self,
input: Option<HyperParameterTuningJobStrategyType>
) -> Self
pub fn set_strategy(
self,
input: Option<HyperParameterTuningJobStrategyType>
) -> Self
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
sourcepub fn strategy_config(
self,
input: HyperParameterTuningJobStrategyConfig
) -> Self
pub fn strategy_config(
self,
input: HyperParameterTuningJobStrategyConfig
) -> Self
The configuration for the Hyperband
optimization strategy. This parameter should be provided only if Hyperband
is selected as the strategy for HyperParameterTuningJobConfig
.
sourcepub fn set_strategy_config(
self,
input: Option<HyperParameterTuningJobStrategyConfig>
) -> Self
pub fn set_strategy_config(
self,
input: Option<HyperParameterTuningJobStrategyConfig>
) -> Self
The configuration for the Hyperband
optimization strategy. This parameter should be provided only if Hyperband
is selected as the strategy for HyperParameterTuningJobConfig
.
sourcepub fn hyper_parameter_tuning_job_objective(
self,
input: HyperParameterTuningJobObjective
) -> Self
pub fn hyper_parameter_tuning_job_objective(
self,
input: HyperParameterTuningJobObjective
) -> Self
The HyperParameterTuningJobObjective
specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
sourcepub fn set_hyper_parameter_tuning_job_objective(
self,
input: Option<HyperParameterTuningJobObjective>
) -> Self
pub fn set_hyper_parameter_tuning_job_objective(
self,
input: Option<HyperParameterTuningJobObjective>
) -> Self
The HyperParameterTuningJobObjective
specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
sourcepub fn resource_limits(self, input: ResourceLimits) -> Self
pub fn resource_limits(self, input: ResourceLimits) -> Self
The ResourceLimits
object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
sourcepub fn set_resource_limits(self, input: Option<ResourceLimits>) -> Self
pub fn set_resource_limits(self, input: Option<ResourceLimits>) -> Self
The ResourceLimits
object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
sourcepub fn parameter_ranges(self, input: ParameterRanges) -> Self
pub fn parameter_ranges(self, input: ParameterRanges) -> Self
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
sourcepub fn set_parameter_ranges(self, input: Option<ParameterRanges>) -> Self
pub fn set_parameter_ranges(self, input: Option<ParameterRanges>) -> Self
The ParameterRanges
object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
sourcepub fn training_job_early_stopping_type(
self,
input: TrainingJobEarlyStoppingType
) -> Self
pub fn training_job_early_stopping_type(
self,
input: TrainingJobEarlyStoppingType
) -> Self
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband
strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType
must be OFF
to use Hyperband
. This parameter can take on one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
sourcepub fn set_training_job_early_stopping_type(
self,
input: Option<TrainingJobEarlyStoppingType>
) -> Self
pub fn set_training_job_early_stopping_type(
self,
input: Option<TrainingJobEarlyStoppingType>
) -> Self
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband
strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType
must be OFF
to use Hyperband
. This parameter can take on one of the following values (the default value is OFF
):
- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
sourcepub fn tuning_job_completion_criteria(
self,
input: TuningJobCompletionCriteria
) -> Self
pub fn tuning_job_completion_criteria(
self,
input: TuningJobCompletionCriteria
) -> Self
The tuning job's completion criteria.
sourcepub fn set_tuning_job_completion_criteria(
self,
input: Option<TuningJobCompletionCriteria>
) -> Self
pub fn set_tuning_job_completion_criteria(
self,
input: Option<TuningJobCompletionCriteria>
) -> Self
The tuning job's completion criteria.
sourcepub fn random_seed(self, input: i32) -> Self
pub fn random_seed(self, input: i32) -> Self
A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
sourcepub fn set_random_seed(self, input: Option<i32>) -> Self
pub fn set_random_seed(self, input: Option<i32>) -> Self
A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
sourcepub fn build(self) -> HyperParameterTuningJobConfig
pub fn build(self) -> HyperParameterTuningJobConfig
Consumes the builder and constructs a HyperParameterTuningJobConfig
.