#[non_exhaustive]pub struct StartTrainedModelInferenceJobInput {Show 13 fields
pub membership_identifier: Option<String>,
pub name: Option<String>,
pub trained_model_arn: Option<String>,
pub trained_model_version_identifier: Option<String>,
pub configured_model_algorithm_association_arn: Option<String>,
pub resource_config: Option<InferenceResourceConfig>,
pub output_configuration: Option<InferenceOutputConfiguration>,
pub data_source: Option<ModelInferenceDataSource>,
pub description: Option<String>,
pub container_execution_parameters: Option<InferenceContainerExecutionParameters>,
pub environment: Option<HashMap<String, String>>,
pub kms_key_arn: Option<String>,
pub tags: Option<HashMap<String, String>>,
}Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.membership_identifier: Option<String>The membership ID of the membership that contains the trained model inference job.
name: Option<String>The name of the trained model inference job.
trained_model_arn: Option<String>The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job.
trained_model_version_identifier: Option<String>The version identifier of the trained model to use for inference. This specifies which version of the trained model should be used to generate predictions on the input data.
configured_model_algorithm_association_arn: Option<String>The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job.
resource_config: Option<InferenceResourceConfig>Defines the resource configuration for the trained model inference job.
output_configuration: Option<InferenceOutputConfiguration>Defines the output configuration information for the trained model inference job.
data_source: Option<ModelInferenceDataSource>Defines the data source that is used for the trained model inference job.
description: Option<String>The description of the trained model inference job.
container_execution_parameters: Option<InferenceContainerExecutionParameters>The execution parameters for the container.
environment: Option<HashMap<String, String>>The environment variables to set in the Docker container.
kms_key_arn: Option<String>The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data.
The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.
Implementations§
Source§impl StartTrainedModelInferenceJobInput
impl StartTrainedModelInferenceJobInput
Sourcepub fn membership_identifier(&self) -> Option<&str>
pub fn membership_identifier(&self) -> Option<&str>
The membership ID of the membership that contains the trained model inference job.
Sourcepub fn trained_model_arn(&self) -> Option<&str>
pub fn trained_model_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job.
Sourcepub fn trained_model_version_identifier(&self) -> Option<&str>
pub fn trained_model_version_identifier(&self) -> Option<&str>
The version identifier of the trained model to use for inference. This specifies which version of the trained model should be used to generate predictions on the input data.
Sourcepub fn configured_model_algorithm_association_arn(&self) -> Option<&str>
pub fn configured_model_algorithm_association_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job.
Sourcepub fn resource_config(&self) -> Option<&InferenceResourceConfig>
pub fn resource_config(&self) -> Option<&InferenceResourceConfig>
Defines the resource configuration for the trained model inference job.
Sourcepub fn output_configuration(&self) -> Option<&InferenceOutputConfiguration>
pub fn output_configuration(&self) -> Option<&InferenceOutputConfiguration>
Defines the output configuration information for the trained model inference job.
Sourcepub fn data_source(&self) -> Option<&ModelInferenceDataSource>
pub fn data_source(&self) -> Option<&ModelInferenceDataSource>
Defines the data source that is used for the trained model inference job.
Sourcepub fn description(&self) -> Option<&str>
pub fn description(&self) -> Option<&str>
The description of the trained model inference job.
Sourcepub fn container_execution_parameters(
&self,
) -> Option<&InferenceContainerExecutionParameters>
pub fn container_execution_parameters( &self, ) -> Option<&InferenceContainerExecutionParameters>
The execution parameters for the container.
Sourcepub fn environment(&self) -> Option<&HashMap<String, String>>
pub fn environment(&self) -> Option<&HashMap<String, String>>
The environment variables to set in the Docker container.
Sourcepub fn kms_key_arn(&self) -> Option<&str>
pub fn kms_key_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data.
The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.
Source§impl StartTrainedModelInferenceJobInput
impl StartTrainedModelInferenceJobInput
Sourcepub fn builder() -> StartTrainedModelInferenceJobInputBuilder
pub fn builder() -> StartTrainedModelInferenceJobInputBuilder
Creates a new builder-style object to manufacture StartTrainedModelInferenceJobInput.
Trait Implementations§
Source§impl Clone for StartTrainedModelInferenceJobInput
impl Clone for StartTrainedModelInferenceJobInput
Source§fn clone(&self) -> StartTrainedModelInferenceJobInput
fn clone(&self) -> StartTrainedModelInferenceJobInput
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl PartialEq for StartTrainedModelInferenceJobInput
impl PartialEq for StartTrainedModelInferenceJobInput
Source§fn eq(&self, other: &StartTrainedModelInferenceJobInput) -> bool
fn eq(&self, other: &StartTrainedModelInferenceJobInput) -> bool
self and other values to be equal, and is used by ==.impl StructuralPartialEq for StartTrainedModelInferenceJobInput
Auto Trait Implementations§
impl Freeze for StartTrainedModelInferenceJobInput
impl RefUnwindSafe for StartTrainedModelInferenceJobInput
impl Send for StartTrainedModelInferenceJobInput
impl Sync for StartTrainedModelInferenceJobInput
impl Unpin for StartTrainedModelInferenceJobInput
impl UnwindSafe for StartTrainedModelInferenceJobInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the foreground set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red() and
green(), which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg():
use yansi::{Paint, Color};
painted.fg(Color::White);Set foreground color to white using white().
use yansi::Paint;
painted.white();Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the background set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red() and
on_green(), which have the same functionality but
are pithier.
§Example
Set background color to red using fg():
use yansi::{Paint, Color};
painted.bg(Color::Red);Set background color to red using on_red().
use yansi::Paint;
painted.on_red();Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute value.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold() and
underline(), which have the same functionality
but are pithier.
§Example
Make text bold using attr():
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);Make text bold using using bold().
use yansi::Paint;
painted.bold();Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi Quirk value.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask() and
wrap(), which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk():
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);Enable wrapping using wrap().
use yansi::Paint;
painted.wrap();Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted only when both stdout and stderr are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);