#[non_exhaustive]pub struct StartTrainedModelInferenceJobInputBuilder { /* private fields */ }Expand description
A builder for StartTrainedModelInferenceJobInput.
Implementations§
Source§impl StartTrainedModelInferenceJobInputBuilder
impl StartTrainedModelInferenceJobInputBuilder
Sourcepub fn membership_identifier(self, input: impl Into<String>) -> Self
pub fn membership_identifier(self, input: impl Into<String>) -> Self
The membership ID of the membership that contains the trained model inference job.
This field is required.Sourcepub fn set_membership_identifier(self, input: Option<String>) -> Self
pub fn set_membership_identifier(self, input: Option<String>) -> Self
The membership ID of the membership that contains the trained model inference job.
Sourcepub fn get_membership_identifier(&self) -> &Option<String>
pub fn get_membership_identifier(&self) -> &Option<String>
The membership ID of the membership that contains the trained model inference job.
Sourcepub fn name(self, input: impl Into<String>) -> Self
pub fn name(self, input: impl Into<String>) -> Self
The name of the trained model inference job.
This field is required.Sourcepub fn set_name(self, input: Option<String>) -> Self
pub fn set_name(self, input: Option<String>) -> Self
The name of the trained model inference job.
Sourcepub fn trained_model_arn(self, input: impl Into<String>) -> Self
pub fn trained_model_arn(self, input: impl Into<String>) -> Self
The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job.
This field is required.Sourcepub fn set_trained_model_arn(self, input: Option<String>) -> Self
pub fn set_trained_model_arn(self, input: Option<String>) -> Self
The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job.
Sourcepub fn get_trained_model_arn(&self) -> &Option<String>
pub fn get_trained_model_arn(&self) -> &Option<String>
The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job.
Sourcepub fn trained_model_version_identifier(self, input: impl Into<String>) -> Self
pub fn trained_model_version_identifier(self, input: impl Into<String>) -> Self
The version identifier of the trained model to use for inference. This specifies which version of the trained model should be used to generate predictions on the input data.
Sourcepub fn set_trained_model_version_identifier(self, input: Option<String>) -> Self
pub fn set_trained_model_version_identifier(self, input: Option<String>) -> Self
The version identifier of the trained model to use for inference. This specifies which version of the trained model should be used to generate predictions on the input data.
Sourcepub fn get_trained_model_version_identifier(&self) -> &Option<String>
pub fn get_trained_model_version_identifier(&self) -> &Option<String>
The version identifier of the trained model to use for inference. This specifies which version of the trained model should be used to generate predictions on the input data.
Sourcepub fn configured_model_algorithm_association_arn(
self,
input: impl Into<String>,
) -> Self
pub fn configured_model_algorithm_association_arn( self, input: impl Into<String>, ) -> Self
The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job.
Sourcepub fn set_configured_model_algorithm_association_arn(
self,
input: Option<String>,
) -> Self
pub fn set_configured_model_algorithm_association_arn( self, input: Option<String>, ) -> Self
The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job.
Sourcepub fn get_configured_model_algorithm_association_arn(&self) -> &Option<String>
pub fn get_configured_model_algorithm_association_arn(&self) -> &Option<String>
The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job.
Sourcepub fn resource_config(self, input: InferenceResourceConfig) -> Self
pub fn resource_config(self, input: InferenceResourceConfig) -> Self
Defines the resource configuration for the trained model inference job.
This field is required.Sourcepub fn set_resource_config(self, input: Option<InferenceResourceConfig>) -> Self
pub fn set_resource_config(self, input: Option<InferenceResourceConfig>) -> Self
Defines the resource configuration for the trained model inference job.
Sourcepub fn get_resource_config(&self) -> &Option<InferenceResourceConfig>
pub fn get_resource_config(&self) -> &Option<InferenceResourceConfig>
Defines the resource configuration for the trained model inference job.
Sourcepub fn output_configuration(self, input: InferenceOutputConfiguration) -> Self
pub fn output_configuration(self, input: InferenceOutputConfiguration) -> Self
Defines the output configuration information for the trained model inference job.
This field is required.Sourcepub fn set_output_configuration(
self,
input: Option<InferenceOutputConfiguration>,
) -> Self
pub fn set_output_configuration( self, input: Option<InferenceOutputConfiguration>, ) -> Self
Defines the output configuration information for the trained model inference job.
Sourcepub fn get_output_configuration(&self) -> &Option<InferenceOutputConfiguration>
pub fn get_output_configuration(&self) -> &Option<InferenceOutputConfiguration>
Defines the output configuration information for the trained model inference job.
Sourcepub fn data_source(self, input: ModelInferenceDataSource) -> Self
pub fn data_source(self, input: ModelInferenceDataSource) -> Self
Defines the data source that is used for the trained model inference job.
This field is required.Sourcepub fn set_data_source(self, input: Option<ModelInferenceDataSource>) -> Self
pub fn set_data_source(self, input: Option<ModelInferenceDataSource>) -> Self
Defines the data source that is used for the trained model inference job.
Sourcepub fn get_data_source(&self) -> &Option<ModelInferenceDataSource>
pub fn get_data_source(&self) -> &Option<ModelInferenceDataSource>
Defines the data source that is used for the trained model inference job.
Sourcepub fn description(self, input: impl Into<String>) -> Self
pub fn description(self, input: impl Into<String>) -> Self
The description of the trained model inference job.
Sourcepub fn set_description(self, input: Option<String>) -> Self
pub fn set_description(self, input: Option<String>) -> Self
The description of the trained model inference job.
Sourcepub fn get_description(&self) -> &Option<String>
pub fn get_description(&self) -> &Option<String>
The description of the trained model inference job.
Sourcepub fn container_execution_parameters(
self,
input: InferenceContainerExecutionParameters,
) -> Self
pub fn container_execution_parameters( self, input: InferenceContainerExecutionParameters, ) -> Self
The execution parameters for the container.
Sourcepub fn set_container_execution_parameters(
self,
input: Option<InferenceContainerExecutionParameters>,
) -> Self
pub fn set_container_execution_parameters( self, input: Option<InferenceContainerExecutionParameters>, ) -> Self
The execution parameters for the container.
Sourcepub fn get_container_execution_parameters(
&self,
) -> &Option<InferenceContainerExecutionParameters>
pub fn get_container_execution_parameters( &self, ) -> &Option<InferenceContainerExecutionParameters>
The execution parameters for the container.
Sourcepub fn environment(self, k: impl Into<String>, v: impl Into<String>) -> Self
pub fn environment(self, k: impl Into<String>, v: impl Into<String>) -> Self
Adds a key-value pair to environment.
To override the contents of this collection use set_environment.
The environment variables to set in the Docker container.
Sourcepub fn set_environment(self, input: Option<HashMap<String, String>>) -> Self
pub fn set_environment(self, input: Option<HashMap<String, String>>) -> Self
The environment variables to set in the Docker container.
Sourcepub fn get_environment(&self) -> &Option<HashMap<String, String>>
pub fn get_environment(&self) -> &Option<HashMap<String, String>>
The environment variables to set in the Docker container.
Sourcepub fn kms_key_arn(self, input: impl Into<String>) -> Self
pub fn kms_key_arn(self, input: impl Into<String>) -> Self
The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data.
Sourcepub fn set_kms_key_arn(self, input: Option<String>) -> Self
pub fn set_kms_key_arn(self, input: Option<String>) -> Self
The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data.
Sourcepub fn get_kms_key_arn(&self) -> &Option<String>
pub fn get_kms_key_arn(&self) -> &Option<String>
The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data.
Adds a key-value pair to tags.
To override the contents of this collection use set_tags.
The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.
The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.
The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.
Sourcepub fn build(self) -> Result<StartTrainedModelInferenceJobInput, BuildError>
pub fn build(self) -> Result<StartTrainedModelInferenceJobInput, BuildError>
Consumes the builder and constructs a StartTrainedModelInferenceJobInput.
Source§impl StartTrainedModelInferenceJobInputBuilder
impl StartTrainedModelInferenceJobInputBuilder
Sourcepub async fn send_with(
self,
client: &Client,
) -> Result<StartTrainedModelInferenceJobOutput, SdkError<StartTrainedModelInferenceJobError, HttpResponse>>
pub async fn send_with( self, client: &Client, ) -> Result<StartTrainedModelInferenceJobOutput, SdkError<StartTrainedModelInferenceJobError, HttpResponse>>
Sends a request with this input using the given client.
Trait Implementations§
Source§impl Clone for StartTrainedModelInferenceJobInputBuilder
impl Clone for StartTrainedModelInferenceJobInputBuilder
Source§fn clone(&self) -> StartTrainedModelInferenceJobInputBuilder
fn clone(&self) -> StartTrainedModelInferenceJobInputBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Default for StartTrainedModelInferenceJobInputBuilder
impl Default for StartTrainedModelInferenceJobInputBuilder
Source§fn default() -> StartTrainedModelInferenceJobInputBuilder
fn default() -> StartTrainedModelInferenceJobInputBuilder
Source§impl PartialEq for StartTrainedModelInferenceJobInputBuilder
impl PartialEq for StartTrainedModelInferenceJobInputBuilder
Source§fn eq(&self, other: &StartTrainedModelInferenceJobInputBuilder) -> bool
fn eq(&self, other: &StartTrainedModelInferenceJobInputBuilder) -> bool
self and other values to be equal, and is used by ==.impl StructuralPartialEq for StartTrainedModelInferenceJobInputBuilder
Auto Trait Implementations§
impl Freeze for StartTrainedModelInferenceJobInputBuilder
impl RefUnwindSafe for StartTrainedModelInferenceJobInputBuilder
impl Send for StartTrainedModelInferenceJobInputBuilder
impl Sync for StartTrainedModelInferenceJobInputBuilder
impl Unpin for StartTrainedModelInferenceJobInputBuilder
impl UnwindSafe for StartTrainedModelInferenceJobInputBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the foreground set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red() and
green(), which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg():
use yansi::{Paint, Color};
painted.fg(Color::White);Set foreground color to white using white().
use yansi::Paint;
painted.white();Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self with the background set to
value.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red() and
on_green(), which have the same functionality but
are pithier.
§Example
Set background color to red using fg():
use yansi::{Paint, Color};
painted.bg(Color::Red);Set background color to red using on_red().
use yansi::Paint;
painted.on_red();Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute value.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold() and
underline(), which have the same functionality
but are pithier.
§Example
Make text bold using attr():
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);Make text bold using using bold().
use yansi::Paint;
painted.bold();Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi Quirk value.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask() and
wrap(), which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk():
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);Enable wrapping using wrap().
use yansi::Paint;
painted.wrap();Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting() due to conflicts with Vec::clear().
The clear() method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted only when both stdout and stderr are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);