pub struct MachOSigner<'data> { /* private fields */ }
Expand description

Mach-O binary signer.

This type provides a high-level interface for signing Mach-O binaries. It handles parsing and rewriting Mach-O binaries and contains most of the functionality for producing signatures for individual Mach-O binaries.

Signing of both single architecture and fat/universal binaries is supported.

Circular Dependency

There is a circular dependency between the generation of the Code Directory present in the embedded signature and the Mach-O binary. See the note in crate::specification for the gory details. The tl;dr is the Mach-O data up to the signature data needs to be digested. But that digested data contains load commands that reference the signature data and its size, which can’t be known until the Code Directory, CMS blob, and SuperBlob are all created.

Our solution to this problem is to estimate the size of the embedded signature data and then pad the unused data will 0s.

Implementations§

Construct a new instance from unparsed data representing a Mach-O binary.

The data will be parsed as a Mach-O binary (either single arch or fat/universal) and validated that we are capable of signing it.

Examples found in repository?
src/signing.rs (line 90)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    pub fn sign_macho(
        &self,
        input_path: impl AsRef<Path>,
        output_path: impl AsRef<Path>,
    ) -> Result<(), AppleCodesignError> {
        let input_path = input_path.as_ref();
        let output_path = output_path.as_ref();

        warn!("signing {} as a Mach-O binary", input_path.display());
        let macho_data = std::fs::read(input_path)?;

        let mut settings = self.settings.clone();

        settings.import_settings_from_macho(&macho_data)?;

        if settings.binary_identifier(SettingsScope::Main).is_none() {
            let identifier = input_path
                .file_name()
                .ok_or_else(|| {
                    AppleCodesignError::CliGeneralError(
                        "unable to resolve file name of binary".into(),
                    )
                })?
                .to_string_lossy();

            warn!("setting binary identifier to {}", identifier);
            settings.set_binary_identifier(SettingsScope::Main, identifier);
        }

        warn!("parsing Mach-O");
        let signer = MachOSigner::new(&macho_data)?;

        let mut macho_data = vec![];
        signer.write_signed_binary(&settings, &mut macho_data)?;
        warn!("writing Mach-O to {}", output_path.display());
        write_macho_file(input_path, output_path, &macho_data)?;

        Ok(())
    }
More examples
Hide additional examples
src/bundle_signing.rs (line 337)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    fn sign_and_install_macho(
        &self,
        file: &DirectoryBundleFile,
    ) -> Result<SignedMachOInfo, AppleCodesignError> {
        info!("signing Mach-O file {}", file.relative_path().display());

        let macho_data = std::fs::read(file.absolute_path())?;
        let signer = MachOSigner::new(&macho_data)?;

        let mut settings = self
            .settings
            .as_bundle_macho_settings(file.relative_path().to_string_lossy().as_ref());

        settings.import_settings_from_macho(&macho_data)?;

        // If there isn't a defined binary identifier, derive one from the file name so one is set
        // and we avoid a signing error due to missing identifier.
        // TODO do we need to check the nested Mach-O settings?
        if settings.binary_identifier(SettingsScope::Main).is_none() {
            let identifier = file
                .relative_path()
                .file_name()
                .expect("failure to extract filename (this should never happen)")
                .to_string_lossy();

            let identifier = identifier
                .strip_suffix(".dylib")
                .unwrap_or_else(|| identifier.as_ref());

            info!(
                "Mach-O is missing binary identifier; setting to {} based on file name",
                identifier
            );
            settings.set_binary_identifier(SettingsScope::Main, identifier);
        }

        let mut new_data = Vec::<u8>::with_capacity(macho_data.len() + 2_usize.pow(17));
        signer.write_signed_binary(&settings, &mut new_data)?;

        let dest_path = self.dest_dir.join(file.relative_path());

        info!("writing Mach-O to {}", dest_path.display());
        write_macho_file(file.absolute_path(), &dest_path, &new_data)?;

        SignedMachOInfo::parse_data(&new_data)
    }
}

/// A primitive for signing a single Apple bundle.
///
/// Unlike [BundleSigner], this type only signs a single bundle and is ignorant
/// about nested bundles. You probably want to use [BundleSigner] as the interface
/// for signing bundles, as failure to account for nested bundles can result in
/// signature verification errors.
pub struct SingleBundleSigner {
    /// The bundle being signed.
    bundle: DirectoryBundle,
}

impl SingleBundleSigner {
    /// Construct a new instance.
    pub fn new(bundle: DirectoryBundle) -> Self {
        Self { bundle }
    }

    /// Write a signed bundle to the given directory.
    pub fn write_signed_bundle(
        &self,
        dest_dir: impl AsRef<Path>,
        settings: &SigningSettings,
    ) -> Result<DirectoryBundle, AppleCodesignError> {
        let dest_dir = dest_dir.as_ref();

        warn!(
            "signing bundle at {} into {}",
            self.bundle.root_dir().display(),
            dest_dir.display()
        );

        // Frameworks are a bit special.
        //
        // Modern frameworks typically have a `Versions/` directory containing directories
        // with the actual frameworks. These are the actual directories that are signed - not
        // the top-most directory. In fact, the top-most `.framework` directory doesn't have any
        // code signature elements at all and can effectively be ignored as far as signing
        // is concerned.
        //
        // But even if there is a `Versions/` directory with nested bundles to sign, the top-level
        // directory may have some symlinks. And those need to be preserved. In addition, there
        // may be symlinks in `Versions/`. `Versions/Current` is common.
        //
        // Of course, if there is no `Versions/` directory, the top-level directory could be
        // a valid framework warranting signing.
        if self.bundle.package_type() == BundlePackageType::Framework {
            if self.bundle.root_dir().join("Versions").is_dir() {
                warn!("found a versioned framework; each version will be signed as its own bundle");

                // But we still need to preserve files (hopefully just symlinks) outside the
                // nested bundles under `Versions/`. Since we don't nest into child bundles
                // here, it should be safe to handle each encountered file.
                let handler = SingleBundleHandler {
                    dest_dir: dest_dir.to_path_buf(),
                    settings,
                };

                for file in self
                    .bundle
                    .files(false)
                    .map_err(AppleCodesignError::DirectoryBundle)?
                {
                    handler.install_file(&file)?;
                }

                return DirectoryBundle::new_from_path(dest_dir)
                    .map_err(AppleCodesignError::DirectoryBundle);
            } else {
                warn!("found an unversioned framework; signing like normal");
            }
        }

        let dest_dir_root = dest_dir.to_path_buf();

        let dest_dir = if self.bundle.shallow() {
            dest_dir_root.clone()
        } else {
            dest_dir.join("Contents")
        };

        self.bundle
            .identifier()
            .map_err(AppleCodesignError::DirectoryBundle)?
            .ok_or_else(|| AppleCodesignError::BundleNoIdentifier(self.bundle.info_plist_path()))?;

        let mut resources_digests = settings.all_digests(SettingsScope::Main);

        // State in the main executable can influence signing settings of the bundle. So examine
        // it first.

        let main_exe = self
            .bundle
            .files(false)
            .map_err(AppleCodesignError::DirectoryBundle)?
            .into_iter()
            .find(|f| matches!(f.is_main_executable(), Ok(true)));

        if let Some(exe) = &main_exe {
            let macho_data = std::fs::read(exe.absolute_path())?;
            let mach = MachFile::parse(&macho_data)?;

            for macho in mach.iter_macho() {
                if let Some(targeting) = macho.find_targeting()? {
                    let sha256_version = targeting.platform.sha256_digest_support()?;

                    if !sha256_version.matches(&targeting.minimum_os_version)
                        && resources_digests != vec![DigestType::Sha1, DigestType::Sha256]
                    {
                        info!("main executable targets OS requiring SHA-1 signatures; activating SHA-1 + SHA-256 signing");
                        resources_digests = vec![DigestType::Sha1, DigestType::Sha256];
                        break;
                    }
                }
            }
        }

        warn!("collecting code resources files");

        // The set of rules to use is determined by whether the bundle *can* have a
        // `Resources/`, not whether it necessarily does. The exact rules for this are not
        // known. Essentially we want to test for the result of CFBundleCopyResourcesDirectoryURL().
        // We assume that we can use the resources rules when there is a `Resources` directory
        // (this seems obvious!) or when the bundle isn't shallow, as a non-shallow bundle should
        // be an app bundle and app bundles can always have resources (we think).
        let mut resources_builder =
            if self.bundle.resolve_path("Resources").is_dir() || !self.bundle.shallow() {
                CodeResourcesBuilder::default_resources_rules()?
            } else {
                CodeResourcesBuilder::default_no_resources_rules()?
            };

        // Ensure emitted digests match what we're configured to emit.
        resources_builder.set_digests(resources_digests.into_iter());

        // Exclude code signature files we'll write.
        resources_builder.add_exclusion_rule(CodeResourcesRule::new("^_CodeSignature/")?.exclude());
        // Ignore notarization ticket.
        resources_builder.add_exclusion_rule(CodeResourcesRule::new("^CodeResources$")?.exclude());

        let handler = SingleBundleHandler {
            dest_dir: dest_dir_root.clone(),
            settings,
        };

        let mut info_plist_data = None;

        // Iterate files in this bundle and register as code resources.
        //
        // Traversing into nested bundles seems wrong but it is correct. The resources builder
        // has rules to determine whether to process a path and assuming the rules and evaluation
        // of them is correct, it is able to decide for itself how to handle a path.
        //
        // Furthermore, this behavior is needed as bundles can encapsulate signatures for nested
        // bundles. For example, you could have a framework bundle with an embedded app bundle in
        // `Resources/MyApp.app`! In this case, the framework's CodeResources encapsulates the
        // content of `Resources/My.app` per the processing rules.
        for file in self
            .bundle
            .files(true)
            .map_err(AppleCodesignError::DirectoryBundle)?
        {
            // The main executable is special and handled below.
            if file
                .is_main_executable()
                .map_err(AppleCodesignError::DirectoryBundle)?
            {
                continue;
            } else if file.is_info_plist() {
                // The Info.plist is digested specially. But it may also be handled by
                // the resources handler. So always feed it through.
                info!(
                    "{} is the Info.plist file; handling specially",
                    file.relative_path().display()
                );
                resources_builder.process_file(&file, &handler)?;
                info_plist_data = Some(std::fs::read(file.absolute_path())?);
            } else {
                resources_builder.process_file(&file, &handler)?;
            }
        }

        // Seal code directory digests of any nested bundles.
        //
        // Apple's tooling seems to only do this for some bundle type combinations. I'm
        // not yet sure what the complete heuristic is. But we observed that frameworks
        // don't appear to include digests of any nested app bundles. So we add that
        // exclusion. iOS bundles don't seem to include digests for nested bundles either.
        // We should figure out what the actual rules here...
        if !self.bundle.shallow() {
            let dest_bundle = DirectoryBundle::new_from_path(&dest_dir)
                .map_err(AppleCodesignError::DirectoryBundle)?;

            for (rel_path, nested_bundle) in dest_bundle
                .nested_bundles(false)
                .map_err(AppleCodesignError::DirectoryBundle)?
            {
                resources_builder.process_nested_bundle(&rel_path, &nested_bundle)?;
            }
        }

        // The resources are now sealed. Write out that XML file.
        let code_resources_path = dest_dir.join("_CodeSignature").join("CodeResources");
        warn!(
            "writing sealed resources to {}",
            code_resources_path.display()
        );
        std::fs::create_dir_all(code_resources_path.parent().unwrap())?;
        let mut resources_data = Vec::<u8>::new();
        resources_builder.write_code_resources(&mut resources_data)?;

        {
            let mut fh = std::fs::File::create(&code_resources_path)?;
            fh.write_all(&resources_data)?;
        }

        // Seal the main executable.
        if let Some(exe) = main_exe {
            warn!("signing main executable {}", exe.relative_path().display());

            let macho_data = std::fs::read(exe.absolute_path())?;
            let signer = MachOSigner::new(&macho_data)?;

            let mut settings = settings.clone();

            // The identifier for the main executable is defined in the bundle's Info.plist.
            if let Some(ident) = self
                .bundle
                .identifier()
                .map_err(AppleCodesignError::DirectoryBundle)?
            {
                info!("setting main executable binary identifier to {} (derived from CFBundleIdentifier in Info.plist)", ident);
                settings.set_binary_identifier(SettingsScope::Main, ident);
            } else {
                info!("unable to determine binary identifier from bundle's Info.plist (CFBundleIdentifier not set?)");
            }

            settings.import_settings_from_macho(&macho_data)?;

            settings.set_code_resources_data(SettingsScope::Main, resources_data);

            if let Some(info_plist_data) = info_plist_data {
                settings.set_info_plist_data(SettingsScope::Main, info_plist_data);
            }

            let mut new_data = Vec::<u8>::with_capacity(macho_data.len() + 2_usize.pow(17));
            signer.write_signed_binary(&settings, &mut new_data)?;

            let dest_path = dest_dir_root.join(exe.relative_path());
            info!("writing signed main executable to {}", dest_path.display());
            write_macho_file(exe.absolute_path(), &dest_path, &new_data)?;
        } else {
            warn!("bundle has no main executable to sign specially");
        }

        DirectoryBundle::new_from_path(&dest_dir_root).map_err(AppleCodesignError::DirectoryBundle)
    }

Write signed Mach-O data to the given writer using signing settings.

Examples found in repository?
src/signing.rs (line 93)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    pub fn sign_macho(
        &self,
        input_path: impl AsRef<Path>,
        output_path: impl AsRef<Path>,
    ) -> Result<(), AppleCodesignError> {
        let input_path = input_path.as_ref();
        let output_path = output_path.as_ref();

        warn!("signing {} as a Mach-O binary", input_path.display());
        let macho_data = std::fs::read(input_path)?;

        let mut settings = self.settings.clone();

        settings.import_settings_from_macho(&macho_data)?;

        if settings.binary_identifier(SettingsScope::Main).is_none() {
            let identifier = input_path
                .file_name()
                .ok_or_else(|| {
                    AppleCodesignError::CliGeneralError(
                        "unable to resolve file name of binary".into(),
                    )
                })?
                .to_string_lossy();

            warn!("setting binary identifier to {}", identifier);
            settings.set_binary_identifier(SettingsScope::Main, identifier);
        }

        warn!("parsing Mach-O");
        let signer = MachOSigner::new(&macho_data)?;

        let mut macho_data = vec![];
        signer.write_signed_binary(&settings, &mut macho_data)?;
        warn!("writing Mach-O to {}", output_path.display());
        write_macho_file(input_path, output_path, &macho_data)?;

        Ok(())
    }
More examples
Hide additional examples
src/bundle_signing.rs (line 367)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    fn sign_and_install_macho(
        &self,
        file: &DirectoryBundleFile,
    ) -> Result<SignedMachOInfo, AppleCodesignError> {
        info!("signing Mach-O file {}", file.relative_path().display());

        let macho_data = std::fs::read(file.absolute_path())?;
        let signer = MachOSigner::new(&macho_data)?;

        let mut settings = self
            .settings
            .as_bundle_macho_settings(file.relative_path().to_string_lossy().as_ref());

        settings.import_settings_from_macho(&macho_data)?;

        // If there isn't a defined binary identifier, derive one from the file name so one is set
        // and we avoid a signing error due to missing identifier.
        // TODO do we need to check the nested Mach-O settings?
        if settings.binary_identifier(SettingsScope::Main).is_none() {
            let identifier = file
                .relative_path()
                .file_name()
                .expect("failure to extract filename (this should never happen)")
                .to_string_lossy();

            let identifier = identifier
                .strip_suffix(".dylib")
                .unwrap_or_else(|| identifier.as_ref());

            info!(
                "Mach-O is missing binary identifier; setting to {} based on file name",
                identifier
            );
            settings.set_binary_identifier(SettingsScope::Main, identifier);
        }

        let mut new_data = Vec::<u8>::with_capacity(macho_data.len() + 2_usize.pow(17));
        signer.write_signed_binary(&settings, &mut new_data)?;

        let dest_path = self.dest_dir.join(file.relative_path());

        info!("writing Mach-O to {}", dest_path.display());
        write_macho_file(file.absolute_path(), &dest_path, &new_data)?;

        SignedMachOInfo::parse_data(&new_data)
    }
}

/// A primitive for signing a single Apple bundle.
///
/// Unlike [BundleSigner], this type only signs a single bundle and is ignorant
/// about nested bundles. You probably want to use [BundleSigner] as the interface
/// for signing bundles, as failure to account for nested bundles can result in
/// signature verification errors.
pub struct SingleBundleSigner {
    /// The bundle being signed.
    bundle: DirectoryBundle,
}

impl SingleBundleSigner {
    /// Construct a new instance.
    pub fn new(bundle: DirectoryBundle) -> Self {
        Self { bundle }
    }

    /// Write a signed bundle to the given directory.
    pub fn write_signed_bundle(
        &self,
        dest_dir: impl AsRef<Path>,
        settings: &SigningSettings,
    ) -> Result<DirectoryBundle, AppleCodesignError> {
        let dest_dir = dest_dir.as_ref();

        warn!(
            "signing bundle at {} into {}",
            self.bundle.root_dir().display(),
            dest_dir.display()
        );

        // Frameworks are a bit special.
        //
        // Modern frameworks typically have a `Versions/` directory containing directories
        // with the actual frameworks. These are the actual directories that are signed - not
        // the top-most directory. In fact, the top-most `.framework` directory doesn't have any
        // code signature elements at all and can effectively be ignored as far as signing
        // is concerned.
        //
        // But even if there is a `Versions/` directory with nested bundles to sign, the top-level
        // directory may have some symlinks. And those need to be preserved. In addition, there
        // may be symlinks in `Versions/`. `Versions/Current` is common.
        //
        // Of course, if there is no `Versions/` directory, the top-level directory could be
        // a valid framework warranting signing.
        if self.bundle.package_type() == BundlePackageType::Framework {
            if self.bundle.root_dir().join("Versions").is_dir() {
                warn!("found a versioned framework; each version will be signed as its own bundle");

                // But we still need to preserve files (hopefully just symlinks) outside the
                // nested bundles under `Versions/`. Since we don't nest into child bundles
                // here, it should be safe to handle each encountered file.
                let handler = SingleBundleHandler {
                    dest_dir: dest_dir.to_path_buf(),
                    settings,
                };

                for file in self
                    .bundle
                    .files(false)
                    .map_err(AppleCodesignError::DirectoryBundle)?
                {
                    handler.install_file(&file)?;
                }

                return DirectoryBundle::new_from_path(dest_dir)
                    .map_err(AppleCodesignError::DirectoryBundle);
            } else {
                warn!("found an unversioned framework; signing like normal");
            }
        }

        let dest_dir_root = dest_dir.to_path_buf();

        let dest_dir = if self.bundle.shallow() {
            dest_dir_root.clone()
        } else {
            dest_dir.join("Contents")
        };

        self.bundle
            .identifier()
            .map_err(AppleCodesignError::DirectoryBundle)?
            .ok_or_else(|| AppleCodesignError::BundleNoIdentifier(self.bundle.info_plist_path()))?;

        let mut resources_digests = settings.all_digests(SettingsScope::Main);

        // State in the main executable can influence signing settings of the bundle. So examine
        // it first.

        let main_exe = self
            .bundle
            .files(false)
            .map_err(AppleCodesignError::DirectoryBundle)?
            .into_iter()
            .find(|f| matches!(f.is_main_executable(), Ok(true)));

        if let Some(exe) = &main_exe {
            let macho_data = std::fs::read(exe.absolute_path())?;
            let mach = MachFile::parse(&macho_data)?;

            for macho in mach.iter_macho() {
                if let Some(targeting) = macho.find_targeting()? {
                    let sha256_version = targeting.platform.sha256_digest_support()?;

                    if !sha256_version.matches(&targeting.minimum_os_version)
                        && resources_digests != vec![DigestType::Sha1, DigestType::Sha256]
                    {
                        info!("main executable targets OS requiring SHA-1 signatures; activating SHA-1 + SHA-256 signing");
                        resources_digests = vec![DigestType::Sha1, DigestType::Sha256];
                        break;
                    }
                }
            }
        }

        warn!("collecting code resources files");

        // The set of rules to use is determined by whether the bundle *can* have a
        // `Resources/`, not whether it necessarily does. The exact rules for this are not
        // known. Essentially we want to test for the result of CFBundleCopyResourcesDirectoryURL().
        // We assume that we can use the resources rules when there is a `Resources` directory
        // (this seems obvious!) or when the bundle isn't shallow, as a non-shallow bundle should
        // be an app bundle and app bundles can always have resources (we think).
        let mut resources_builder =
            if self.bundle.resolve_path("Resources").is_dir() || !self.bundle.shallow() {
                CodeResourcesBuilder::default_resources_rules()?
            } else {
                CodeResourcesBuilder::default_no_resources_rules()?
            };

        // Ensure emitted digests match what we're configured to emit.
        resources_builder.set_digests(resources_digests.into_iter());

        // Exclude code signature files we'll write.
        resources_builder.add_exclusion_rule(CodeResourcesRule::new("^_CodeSignature/")?.exclude());
        // Ignore notarization ticket.
        resources_builder.add_exclusion_rule(CodeResourcesRule::new("^CodeResources$")?.exclude());

        let handler = SingleBundleHandler {
            dest_dir: dest_dir_root.clone(),
            settings,
        };

        let mut info_plist_data = None;

        // Iterate files in this bundle and register as code resources.
        //
        // Traversing into nested bundles seems wrong but it is correct. The resources builder
        // has rules to determine whether to process a path and assuming the rules and evaluation
        // of them is correct, it is able to decide for itself how to handle a path.
        //
        // Furthermore, this behavior is needed as bundles can encapsulate signatures for nested
        // bundles. For example, you could have a framework bundle with an embedded app bundle in
        // `Resources/MyApp.app`! In this case, the framework's CodeResources encapsulates the
        // content of `Resources/My.app` per the processing rules.
        for file in self
            .bundle
            .files(true)
            .map_err(AppleCodesignError::DirectoryBundle)?
        {
            // The main executable is special and handled below.
            if file
                .is_main_executable()
                .map_err(AppleCodesignError::DirectoryBundle)?
            {
                continue;
            } else if file.is_info_plist() {
                // The Info.plist is digested specially. But it may also be handled by
                // the resources handler. So always feed it through.
                info!(
                    "{} is the Info.plist file; handling specially",
                    file.relative_path().display()
                );
                resources_builder.process_file(&file, &handler)?;
                info_plist_data = Some(std::fs::read(file.absolute_path())?);
            } else {
                resources_builder.process_file(&file, &handler)?;
            }
        }

        // Seal code directory digests of any nested bundles.
        //
        // Apple's tooling seems to only do this for some bundle type combinations. I'm
        // not yet sure what the complete heuristic is. But we observed that frameworks
        // don't appear to include digests of any nested app bundles. So we add that
        // exclusion. iOS bundles don't seem to include digests for nested bundles either.
        // We should figure out what the actual rules here...
        if !self.bundle.shallow() {
            let dest_bundle = DirectoryBundle::new_from_path(&dest_dir)
                .map_err(AppleCodesignError::DirectoryBundle)?;

            for (rel_path, nested_bundle) in dest_bundle
                .nested_bundles(false)
                .map_err(AppleCodesignError::DirectoryBundle)?
            {
                resources_builder.process_nested_bundle(&rel_path, &nested_bundle)?;
            }
        }

        // The resources are now sealed. Write out that XML file.
        let code_resources_path = dest_dir.join("_CodeSignature").join("CodeResources");
        warn!(
            "writing sealed resources to {}",
            code_resources_path.display()
        );
        std::fs::create_dir_all(code_resources_path.parent().unwrap())?;
        let mut resources_data = Vec::<u8>::new();
        resources_builder.write_code_resources(&mut resources_data)?;

        {
            let mut fh = std::fs::File::create(&code_resources_path)?;
            fh.write_all(&resources_data)?;
        }

        // Seal the main executable.
        if let Some(exe) = main_exe {
            warn!("signing main executable {}", exe.relative_path().display());

            let macho_data = std::fs::read(exe.absolute_path())?;
            let signer = MachOSigner::new(&macho_data)?;

            let mut settings = settings.clone();

            // The identifier for the main executable is defined in the bundle's Info.plist.
            if let Some(ident) = self
                .bundle
                .identifier()
                .map_err(AppleCodesignError::DirectoryBundle)?
            {
                info!("setting main executable binary identifier to {} (derived from CFBundleIdentifier in Info.plist)", ident);
                settings.set_binary_identifier(SettingsScope::Main, ident);
            } else {
                info!("unable to determine binary identifier from bundle's Info.plist (CFBundleIdentifier not set?)");
            }

            settings.import_settings_from_macho(&macho_data)?;

            settings.set_code_resources_data(SettingsScope::Main, resources_data);

            if let Some(info_plist_data) = info_plist_data {
                settings.set_info_plist_data(SettingsScope::Main, info_plist_data);
            }

            let mut new_data = Vec::<u8>::with_capacity(macho_data.len() + 2_usize.pow(17));
            signer.write_signed_binary(&settings, &mut new_data)?;

            let dest_path = dest_dir_root.join(exe.relative_path());
            info!("writing signed main executable to {}", dest_path.display());
            write_macho_file(exe.absolute_path(), &dest_path, &new_data)?;
        } else {
            warn!("bundle has no main executable to sign specially");
        }

        DirectoryBundle::new_from_path(&dest_dir_root).map_err(AppleCodesignError::DirectoryBundle)
    }

Create data constituting the SuperBlob to be embedded in the __LINKEDIT segment.

The superblob contains the code directory, any extra blobs, and an optional CMS structure containing a cryptographic signature.

This takes an explicit Mach-O to operate on due to a circular dependency between writing out the Mach-O and digesting its content. See the note in MachOSigner for details.

Examples found in repository?
src/macho_signing.rs (line 321)
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    pub fn write_signed_binary(
        &self,
        settings: &SigningSettings,
        writer: &mut impl Write,
    ) -> Result<(), AppleCodesignError> {
        // Implementing a true streaming writer requires calculating final sizes
        // of all binaries so fat header offsets and sizes can be written first. We take
        // the easy road and buffer individual Mach-O binaries internally.

        let binaries = self
            .machos
            .iter()
            .enumerate()
            .map(|(index, original_macho)| {
                info!("signing Mach-O binary at index {}", index);
                let settings =
                    settings.as_nested_macho_settings(index, original_macho.macho.header.cputype());

                let signature_len = original_macho.estimate_embedded_signature_size(&settings)?;

                // Derive an intermediate Mach-O with placeholder NULLs for signature
                // data so Code Directory digests over the load commands are correct.
                let placeholder_signature_data = b"\0".repeat(signature_len);

                let intermediate_macho_data =
                    create_macho_with_signature(original_macho, &placeholder_signature_data)?;

                // A nice side-effect of this is that it catches bugs if we write malformed Mach-O!
                let intermediate_macho = MachOBinary::parse(&intermediate_macho_data)?;

                let mut signature_data = self.create_superblob(&settings, &intermediate_macho)?;
                info!("total signature size: {} bytes", signature_data.len());

                // The Mach-O writer adjusts load commands based on the signature length. So pad
                // with NULLs to get to our placeholder length.
                match signature_data.len().cmp(&placeholder_signature_data.len()) {
                    Ordering::Greater => {
                        return Err(AppleCodesignError::SignatureDataTooLarge);
                    }
                    Ordering::Equal => {}
                    Ordering::Less => {
                        signature_data.extend_from_slice(
                            &b"\0".repeat(placeholder_signature_data.len() - signature_data.len()),
                        );
                    }
                }

                create_macho_with_signature(&intermediate_macho, &signature_data)
            })
            .collect::<Result<Vec<_>, AppleCodesignError>>()?;

        if binaries.len() > 1 {
            create_universal_macho(writer, binaries.iter().map(|x| x.as_slice()))?;
        } else {
            writer.write_all(&binaries[0])?;
        }

        Ok(())
    }

Create the CodeDirectory for the current configuration.

This takes an explicit Mach-O to operate on due to a circular dependency between writing out the Mach-O and digesting its content. See the note in MachOSigner for details.

Examples found in repository?
src/macho_signing.rs (line 370)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    pub fn create_superblob(
        &self,
        settings: &SigningSettings,
        macho: &MachOBinary,
    ) -> Result<Vec<u8>, AppleCodesignError> {
        let mut builder = EmbeddedSignatureBuilder::default();

        for (slot, blob) in self.create_special_blobs(settings, macho.is_executable())? {
            builder.add_blob(slot, blob)?;
        }

        let code_directory = self.create_code_directory(settings, macho)?;
        info!("code directory version: {}", code_directory.version);

        builder.add_code_directory(CodeSigningSlot::CodeDirectory, code_directory)?;

        if let Some(digests) = settings.extra_digests(SettingsScope::Main) {
            for digest_type in digests {
                // Since everything consults settings for the digest to use, just make a new settings
                // with a different digest.
                let mut alt_settings = settings.clone();
                alt_settings.set_digest_type(*digest_type);

                info!(
                    "adding alternative code directory using digest {:?}",
                    digest_type
                );
                let cd = self.create_code_directory(&alt_settings, macho)?;

                builder.add_alternative_code_directory(cd)?;
            }
        }

        if let Some((signing_key, signing_cert)) = settings.signing_key() {
            builder.create_cms_signature(
                signing_key,
                signing_cert,
                settings.time_stamp_url(),
                settings.certificate_chain().iter().cloned(),
            )?;
        }

        builder.create_superblob()
    }

Create blobs that need to be written given the current configuration.

This emits all blobs except CodeDirectory and Signature, which are special since they are derived from the blobs emitted here.

The goal of this function is to emit data to facilitate the creation of a CodeDirectory, which requires hashing blobs.

Examples found in repository?
src/macho_signing.rs (line 366)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    pub fn create_superblob(
        &self,
        settings: &SigningSettings,
        macho: &MachOBinary,
    ) -> Result<Vec<u8>, AppleCodesignError> {
        let mut builder = EmbeddedSignatureBuilder::default();

        for (slot, blob) in self.create_special_blobs(settings, macho.is_executable())? {
            builder.add_blob(slot, blob)?;
        }

        let code_directory = self.create_code_directory(settings, macho)?;
        info!("code directory version: {}", code_directory.version);

        builder.add_code_directory(CodeSigningSlot::CodeDirectory, code_directory)?;

        if let Some(digests) = settings.extra_digests(SettingsScope::Main) {
            for digest_type in digests {
                // Since everything consults settings for the digest to use, just make a new settings
                // with a different digest.
                let mut alt_settings = settings.clone();
                alt_settings.set_digest_type(*digest_type);

                info!(
                    "adding alternative code directory using digest {:?}",
                    digest_type
                );
                let cd = self.create_code_directory(&alt_settings, macho)?;

                builder.add_alternative_code_directory(cd)?;
            }
        }

        if let Some((signing_key, signing_cert)) = settings.signing_key() {
            builder.create_cms_signature(
                signing_key,
                signing_cert,
                settings.time_stamp_url(),
                settings.certificate_chain().iter().cloned(),
            )?;
        }

        builder.create_superblob()
    }

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Converts self into T using Into<T>. Read more
Causes self to use its Binary implementation when Debug-formatted.
Causes self to use its Display implementation when Debug-formatted.
Causes self to use its LowerExp implementation when Debug-formatted.
Causes self to use its LowerHex implementation when Debug-formatted.
Causes self to use its Octal implementation when Debug-formatted.
Causes self to use its Pointer implementation when Debug-formatted.
Causes self to use its UpperExp implementation when Debug-formatted.
Causes self to use its UpperHex implementation when Debug-formatted.
Formats each item in a sequence. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Pipes by value. This is generally the method you want to use. Read more
Borrows self and passes that borrow into the pipe function. Read more
Mutably borrows self and passes that borrow into the pipe function. Read more
Borrows self, then passes self.borrow() into the pipe function. Read more
Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Borrows self, then passes self.as_ref() into the pipe function.
Mutably borrows self, then passes self.as_mut() into the pipe function.
Borrows self, then passes self.deref() into the pipe function.
Mutably borrows self, then passes self.deref_mut() into the pipe function.
The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Should always be Self
Immutable access to a value. Read more
Mutable access to a value. Read more
Immutable access to the Borrow<B> of a value. Read more
Mutable access to the BorrowMut<B> of a value. Read more
Immutable access to the AsRef<R> view of a value. Read more
Mutable access to the AsMut<R> view of a value. Read more
Immutable access to the Deref::Target of a value. Read more
Mutable access to the Deref::Target of a value. Read more
Calls .tap() only in debug builds, and is erased in release builds.
Calls .tap_mut() only in debug builds, and is erased in release builds.
Calls .tap_borrow() only in debug builds, and is erased in release builds.
Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Calls .tap_ref() only in debug builds, and is erased in release builds.
Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Calls .tap_deref() only in debug builds, and is erased in release builds.
Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Attempts to convert self into T using TryInto<T>. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more