Struct HStore

Source
pub struct HStore<T> {
    pub map: HashMap<XvcEntity, T>,
}
Expand description

This is a HashMap for more random access and less restrictions, no support for serialization

Fields§

§map: HashMap<XvcEntity, T>

The wrapped map for the store

Implementations§

Source§

impl<T> HStore<T>
where T: Storable,

Source

pub fn to_vstore(&self) -> Result<VStore<T>, Error>

Convert to VStore

Source

pub fn iter_mut(&mut self) -> IterMut<'_, XvcEntity, T>

Returns the inner map’s iter_mut

Source

pub fn get_mut(&mut self, entity: &XvcEntity) -> Option<&mut T>

Return a mutable value for entity

Source

pub fn from_storable<I>( values: I, store: &XvcStore<T>, gen: &XvcEntityGenerator, ) -> HStore<T>
where I: IntoIterator<Item = T>,

This is used to create a store from actual values where the entity may or may not already be in the store.

Source§

impl<T> HStore<T>

Source

pub fn new() -> HStore<T>

Create an empty HStore.

Calls inner map’s HashMap::new.

Source

pub fn with_capacity(capacity: usize) -> HStore<T>

Creates an empty HStore.

Creates an inner map with the given capacity.

Source

pub fn from_func<F>( gen: &XvcEntityGenerator, func: F, ) -> Result<HStore<T>, Error>
where F: Fn() -> Result<Option<T>, Error>,

Creates values from func and gets new entities from gen to create new records.

Source

pub fn len(&self) -> usize

Return the number of elements in this HStore

Source

pub fn is_empty(&self) -> bool

Return true if there are no elements in this HStore

Source

pub fn insert(&mut self, entity: XvcEntity, value: T) -> Option<T>

Calls the inner map’s insert

Source

pub fn to_hset(&self) -> HashSet<T>
where T: Debug + Eq + Hash + Clone,

Returns a HashSet of values.

Source

pub fn to_bset(&self) -> BTreeSet<T>
where T: Debug + Ord + Clone,

Returns a BTreeSet of values.

Source

pub fn inverted_hmap(&self) -> HashMap<T, XvcEntity>
where T: Debug + Eq + Hash + Clone,

Returns a map from values to entities.

Skips if there are duplicate values in the map.

Source

pub fn inverted_bmap(&self) -> BTreeMap<T, XvcEntity>
where T: Debug + Ord + Clone,

Returns a map from values to entities.

Skips if there are duplicate values in the map.

Source

pub fn left_join<U>(&self, other: HStore<U>) -> HStore<(T, Option<U>)>
where T: Storable, U: Storable,

Performs a left join with XvcEntity keys.

The returned store contains (T, Option<U>) values that correspond to the identical XvcEntity values.

§Example

If this store has

{10: "John Doe", 12: "George Mason", 19: "Ali Canfield"}, and the other store contains {10: "Carpenter", 17: "Developer", 19: "Artist" }

left_join will return

{10: ("John Doe", Some("Carpenter")), 12: ("George Mason", None), 19: ("Ali Canfield", Some("Artist")}

Note that, it may be more convenient to keep this relationship in a crate::R11Store if your stores don’t use filtering

Source

pub fn full_join<U>(&self, other: HStore<U>) -> HStore<(Option<T>, Option<U>)>
where T: Storable, U: Storable,

Performs a full join with XvcEntity keys.

The returned store contains (Option<T>, Option<U>) values that correspond to the identical XvcEntity values.

Note that, it may be more convenient to keep this relationship in a crate::R11Store if your stores don’t use filtering


use xvc_ecs::{XvcEntity, HStore};

let mut store1 = HStore::<String>::new();
store1.insert(10u128.into(), "John Doe".into());
store1.insert(12u128.into(), "George Mason".into());
store1.insert(19u128.into(), "Ali Canfield".into());

let mut store2 = HStore::<String>::new();
store2.insert(10u128.into(), "Carpenter".into());
store2.insert(17u128.into(), "Developer".into());
store2.insert(15u128.into(), "Plumber".into());
store2.insert(19u128.into(), "Artist".into());

let result = store1.full_join(store2);

assert_eq!(result.len(), 5);
assert_eq!(result[&10u128.into()], (Some("John Doe".into()), Some("Carpenter".into())));
assert_eq!(result[&12u128.into()], (Some("George Mason".into()), None));
assert_eq!(result[&15u128.into()], (None, Some("Plumber".into())));
assert_eq!(result[&17u128.into()], (None, Some("Developer".into())));
assert_eq!(result[&19u128.into()], (Some("Ali Canfield".into()), Some("Artist".into())));
Source

pub fn join<U>(&self, other: HStore<U>) -> HStore<(T, U)>
where T: Storable, U: Storable,

Performs a join with XvcEntity keys.

The returned store contains (T, U) values that correspond to the identical XvcEntity values for values that exist in both stores.

§Example

If this store has

{10: "John Doe", 12: "George Mason", 19: "Ali Canfield"}, and the other store contains {10: "Carpenter", 17: "Developer", 15: "Plumber", 19: "Artist" }

join will return

{10: ("John Doe", "Carpenter"), 19: ("Ali Canfield", "Artist")}

Note that, it may be more convenient to keep this relationship in a crate::R11Store if your stores don’t use filtering


use xvc_ecs::{XvcEntity, HStore};

let mut store1 = HStore::<String>::new();
store1.insert(10u128.into(), "John Doe".into());
store1.insert(12u128.into(), "George Mason".into());
store1.insert(19u128.into(), "Ali Canfield".into());

let mut store2 = HStore::<String>::new();
store2.insert(10u128.into(), "Carpenter".into());
store2.insert(17u128.into(), "Developer".into());
store2.insert(15u128.into(), "Plumber".into());
store2.insert(19u128.into(), "Artist".into());

let result = store1.join(store2);

assert_eq!(result.len(), 2);
assert_eq!(result[&10u128.into()], ("John Doe".into(), "Carpenter".into()));
assert_eq!(result[&19u128.into()], ("Ali Canfield".into(), "Artist".into()));
Source

pub fn subset<I>(&self, keys: I) -> Result<HStore<T>, Error>
where I: Iterator<Item = XvcEntity>, T: Clone,

returns a subset of the store defined by iterator of XvcEntity

Source

pub fn filter<F>(&self, predicate: F) -> HStore<&T>
where F: Fn(&XvcEntity, &T) -> bool,

Creates a new map by calling the predicate with each value.

predicate must be a function or closure that returns bool.

It doesn’t clone the values.

Source

pub fn first(&self) -> Option<(&XvcEntity, &T)>

Returns the first element of the map.

Source§

impl<T> HStore<&T>
where T: Clone,

Source

pub fn cloned(&self) -> HStore<T>

Returns a new map by cloning the values.

Source§

impl<T> HStore<T>
where T: PartialEq,

Source

pub fn entities_for(&self, value: &T) -> Option<Vec<XvcEntity>>
where T: PartialEq,

Returns the entities for a value.

There may be more than one entity for a given value, hence it returns a Vec. It uses internal reverse index for fast lookup.

Source

pub fn entity_by_value(&self, value: &T) -> Option<XvcEntity>

Returns the first entity matched with Self::entities_for

Methods from Deref<Target = HashMap<XvcEntity, T>>§

1.0.0 · Source

pub fn capacity(&self) -> usize

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

§Examples
use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);
1.0.0 · Source

pub fn keys(&self) -> Keys<'_, K, V>

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for key in map.keys() {
    println!("{key}");
}
§Performance

In the current implementation, iterating over keys takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn values(&self) -> Values<'_, K, V>

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for val in map.values() {
    println!("{val}");
}
§Performance

In the current implementation, iterating over values takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.10.0 · Source

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

§Examples
use std::collections::HashMap;

let mut map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{val}");
}
§Performance

In the current implementation, iterating over values takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn iter(&self) -> Iter<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for (key, val) in map.iter() {
    println!("key: {key} val: {val}");
}
§Performance

In the current implementation, iterating over map takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

§Examples
use std::collections::HashMap;

let mut map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {key} val: {val}");
}
§Performance

In the current implementation, iterating over map takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn len(&self) -> usize

Returns the number of elements in the map.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
1.0.0 · Source

pub fn is_empty(&self) -> bool

Returns true if the map contains no elements.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
1.6.0 · Source

pub fn drain(&mut self) -> Drain<'_, K, V>

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

If the returned iterator is dropped before being fully consumed, it drops the remaining key-value pairs. The returned iterator keeps a mutable borrow on the map to optimize its implementation.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());
1.87.0 · Source

pub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F>
where F: FnMut(&K, &mut V) -> bool,

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, the element is removed from the map and yielded. If the closure returns false, or panics, the element remains in the map and will not be yielded.

Note that extract_if lets you mutate every value in the filter closure, regardless of whether you choose to keep or remove it.

If the returned ExtractIf is not exhausted, e.g. because it is dropped without iterating or the iteration short-circuits, then the remaining elements will be retained. Use retain with a negated predicate if you do not need the returned iterator.

§Examples

Splitting a map into even and odd keys, reusing the original map:

use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let extracted: HashMap<i32, i32> = map.extract_if(|k, _v| k % 2 == 0).collect();

let mut evens = extracted.keys().copied().collect::<Vec<_>>();
let mut odds = map.keys().copied().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
1.18.0 · Source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&K, &mut V) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) for which f(&k, &mut v) returns false. The elements are visited in unsorted (and unspecified) order.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);
§Performance

In the current implementation, this operation takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn clear(&mut self)

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());
1.9.0 · Source

pub fn hasher(&self) -> &S

Returns a reference to the map’s BuildHasher.

§Examples
use std::collections::HashMap;
use std::hash::RandomState;

let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();
1.0.0 · Source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to speculatively avoid frequent reallocations. After calling reserve, capacity will be greater than or equal to self.len() + additional. Does nothing if capacity is already sufficient.

§Panics

Panics if the new allocation size overflows usize.

§Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);
1.57.0 · Source

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>

Tries to reserve capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to speculatively avoid frequent reallocations. After calling try_reserve, capacity will be greater than or equal to self.len() + additional if it returns Ok(()). Does nothing if capacity is already sufficient.

§Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

§Examples
use std::collections::HashMap;

let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on a handful of bytes?");
1.0.0 · Source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
1.56.0 · Source

pub fn shrink_to(&mut self, min_capacity: usize)

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

If the current capacity is less than the lower limit, this is a no-op.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
1.0.0 · Source

pub fn entry(&mut self, key: K) -> Entry<'_, K, V>

Gets the given key’s corresponding entry in the map for in-place manipulation.

§Examples
use std::collections::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    letters.entry(ch).and_modify(|counter| *counter += 1).or_insert(1);
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
1.0.0 · Source

pub fn get<Q>(&self, k: &Q) -> Option<&V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
1.40.0 · Source

pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns the key-value pair corresponding to the supplied key. This is potentially useful:

  • for key types where non-identical keys can be considered equal;
  • for getting the &K stored key value from a borrowed &Q lookup key; or
  • for getting a reference to a key with the same lifetime as the collection.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;
use std::hash::{Hash, Hasher};

#[derive(Clone, Copy, Debug)]
struct S {
    id: u32,
    name: &'static str, // ignored by equality and hashing operations
}

impl PartialEq for S {
    fn eq(&self, other: &S) -> bool {
        self.id == other.id
    }
}

impl Eq for S {}

impl Hash for S {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.id.hash(state);
    }
}

let j_a = S { id: 1, name: "Jessica" };
let j_b = S { id: 1, name: "Jess" };
let p = S { id: 2, name: "Paul" };
assert_eq!(j_a, j_b);

let mut map = HashMap::new();
map.insert(j_a, "Paris");
assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
assert_eq!(map.get_key_value(&p), None);
1.86.0 · Source

pub fn get_disjoint_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<&mut V>; N]
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Attempts to get mutable references to N values in the map at once.

Returns an array of length N with the results of each query. For soundness, at most one mutable reference will be returned to any value. None will be used if the key is missing.

§Panics

Panics if any keys are overlapping.

§Examples
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

// Get Athenæum and Bodleian Library
let [Some(a), Some(b)] = libraries.get_disjoint_mut([
    "Athenæum",
    "Bodleian Library",
]) else { panic!() };

// Assert values of Athenæum and Library of Congress
let got = libraries.get_disjoint_mut([
    "Athenæum",
    "Library of Congress",
]);
assert_eq!(
    got,
    [
        Some(&mut 1807),
        Some(&mut 1800),
    ],
);

// Missing keys result in None
let got = libraries.get_disjoint_mut([
    "Athenæum",
    "New York Public Library",
]);
assert_eq!(
    got,
    [
        Some(&mut 1807),
        None
    ]
);
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Athenæum".to_string(), 1807);

// Duplicate keys panic!
let got = libraries.get_disjoint_mut([
    "Athenæum",
    "Athenæum",
]);
1.86.0 · Source

pub unsafe fn get_disjoint_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<&mut V>; N]
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Attempts to get mutable references to N values in the map at once, without validating that the values are unique.

Returns an array of length N with the results of each query. None will be used if the key is missing.

For a safe alternative see get_disjoint_mut.

§Safety

Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.

§Examples
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

// SAFETY: The keys do not overlap.
let [Some(a), Some(b)] = (unsafe { libraries.get_disjoint_unchecked_mut([
    "Athenæum",
    "Bodleian Library",
]) }) else { panic!() };

// SAFETY: The keys do not overlap.
let got = unsafe { libraries.get_disjoint_unchecked_mut([
    "Athenæum",
    "Library of Congress",
]) };
assert_eq!(
    got,
    [
        Some(&mut 1807),
        Some(&mut 1800),
    ],
);

// SAFETY: The keys do not overlap.
let got = unsafe { libraries.get_disjoint_unchecked_mut([
    "Athenæum",
    "New York Public Library",
]) };
// Missing keys result in None
assert_eq!(got, [Some(&mut 1807), None]);
1.0.0 · Source

pub fn contains_key<Q>(&self, k: &Q) -> bool
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
1.0.0 · Source

pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");
1.0.0 · Source

pub fn insert(&mut self, k: K, v: V) -> Option<V>

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
Source

pub fn try_insert( &mut self, key: K, value: V, ) -> Result<&mut V, OccupiedError<'_, K, V>>

🔬This is a nightly-only experimental API. (map_try_insert)

Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.

If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.

§Examples

Basic usage:

#![feature(map_try_insert)]

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");

let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");
1.0.0 · Source

pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
1.27.0 · Source

pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);

Trait Implementations§

Source§

impl<T> Clone for HStore<T>
where T: Clone,

Source§

fn clone(&self) -> HStore<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T> Debug for HStore<T>
where T: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> Default for HStore<T>

Source§

fn default() -> HStore<T>

Returns the “default value” for a type. Read more
Source§

impl<T> Deref for HStore<T>

Source§

type Target = HashMap<XvcEntity, T>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<HStore<T> as Deref>::Target

Dereferences the value.
Source§

impl<T> DerefMut for HStore<T>

Source§

fn deref_mut(&mut self) -> &mut <HStore<T> as Deref>::Target

Mutably dereferences the value.
Source§

impl<T> From<&XvcStore<T>> for HStore<T>
where T: Storable,

Source§

fn from(store: &XvcStore<T>) -> HStore<T>

Converts to this type from the input type.
Source§

impl<T> From<(XvcEntity, T)> for HStore<T>

Source§

fn from(_: (XvcEntity, T)) -> HStore<T>

Converts to this type from the input type.
Source§

impl<T> From<HStore<T>> for VStore<T>
where T: Storable,

Source§

fn from(store: HStore<T>) -> VStore<T>

Converts to this type from the input type.
Source§

impl<T> From<HashMap<XvcEntity, T>> for HStore<T>

Source§

fn from(map: HashMap<XvcEntity, T>) -> HStore<T>

Converts to this type from the input type.
Source§

impl<T> FromIterator<(XvcEntity, T)> for HStore<T>

Source§

fn from_iter<I>(iter: I) -> HStore<T>
where I: IntoIterator<Item = (XvcEntity, T)>,

Creates a value from an iterator. Read more
Source§

impl<T> FromParallelIterator<(XvcEntity, T)> for HStore<T>
where T: Send,

Source§

fn from_par_iter<I>(par_iter: I) -> HStore<T>
where I: IntoParallelIterator<Item = (XvcEntity, T)>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
Source§

impl<T> IntoIterator for HStore<T>

Source§

type Item = (XvcEntity, T)

The type of the elements being iterated over.
Source§

type IntoIter = IntoIter<XvcEntity, T>

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> <HStore<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more

Auto Trait Implementations§

§

impl<T> Freeze for HStore<T>

§

impl<T> RefUnwindSafe for HStore<T>
where T: RefUnwindSafe,

§

impl<T> Send for HStore<T>
where T: Send,

§

impl<T> Sync for HStore<T>
where T: Sync,

§

impl<T> Unpin for HStore<T>
where T: Unpin,

§

impl<T> UnwindSafe for HStore<T>
where T: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T