pub struct GeneratorFlags(/* private fields */);Expand description
Different flags that control what code the Generator
is generating.
Implementations§
Source§impl GeneratorFlags
impl GeneratorFlags
Sourcepub const NONE: Self
pub const NONE: Self
None of the features are enabled.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Setting none of the flags will result in the following code:
#[derive(Debug)]
pub struct MyChoiceType {
pub content: MyChoiceTypeContent,
}
#[derive(Debug)]
pub enum MyChoiceTypeContent {
Once(i32),
Optional(Option<i32>),
OnceSpecify(i32),
TwiceOrMore(Vec<i32>),
}
#[derive(Debug)]
pub struct MySequenceType {
pub content: MySequenceTypeContent,
}
#[derive(Debug)]
pub struct MySequenceTypeContent {
pub once: i32,
pub optional: Option<i32>,
pub once_specify: i32,
pub twice_or_more: Vec<i32>,
}Sourcepub const USE_MODULES: Self
pub const USE_MODULES: Self
The generated code uses modules for the different namespaces.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Enable the USE_MODULES feature only will result in the following code:
pub mod tns {
#[derive(Debug)]
pub struct MyChoiceType {
pub content: MyChoiceTypeContent,
}
#[derive(Debug)]
pub enum MyChoiceTypeContent {
Once(i32),
Optional(Option<i32>),
OnceSpecify(i32),
TwiceOrMore(Vec<i32>),
}
#[derive(Debug)]
pub struct MySequenceType {
pub content: MySequenceTypeContent,
}
#[derive(Debug)]
pub struct MySequenceTypeContent {
pub once: i32,
pub optional: Option<i32>,
pub once_specify: i32,
pub twice_or_more: Vec<i32>,
}
}Sourcepub const USE_NAMESPACE_MODULES: Self
pub const USE_NAMESPACE_MODULES: Self
The generated code uses modules for the different namespaces.
See USE_MODULES for details.
Sourcepub const USE_SCHEMA_MODULES: Self
pub const USE_SCHEMA_MODULES: Self
The generated code uses modules for the different schemas.
See USE_MODULES for details.
Sourcepub const FLATTEN_CONTENT: Self
pub const FLATTEN_CONTENT: Self
The generator flattens the content type of choice types if it does not define any element attributes.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Enable the FLATTEN_CONTENT feature only will result in the following code:
#[derive(Debug)]
pub enum MyChoiceType {
Once(i32),
Optional(Option<i32>),
OnceSpecify(i32),
TwiceOrMore(Vec<i32>),
}
#[derive(Debug)]
pub struct MySequenceType {
pub once: i32,
pub optional: Option<i32>,
pub once_specify: i32,
pub twice_or_more: Vec<i32>,
}Sourcepub const FLATTEN_ENUM_CONTENT: Self
pub const FLATTEN_ENUM_CONTENT: Self
The generator flattens the content of enum types if possible.
See FLATTEN_CONTENT for details.
Sourcepub const FLATTEN_STRUCT_CONTENT: Self
pub const FLATTEN_STRUCT_CONTENT: Self
The generator flattens the content of struct types if possible.
See FLATTEN_CONTENT for details.
Sourcepub const MIXED_TYPE_SUPPORT: Self
pub const MIXED_TYPE_SUPPORT: Self
Enable support for mixed types.
This will enable code generation for mixed types. This feature needs
to be used with caution, because support for mixed types when using
serde is quite limited.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Enable the MIXED_TYPE_SUPPORT feature only will result in the following code:
use xsd_parser_types::xml::{Mixed, Text};
#[derive(Debug)]
pub struct MyChoiceType {
pub text_before: Option<Text>,
pub content: MyChoiceTypeContent,
}
#[derive(Debug)]
pub enum MyChoiceTypeContent {
Once(Mixed<i32>),
Optional(Option<Mixed<i32>>),
OnceSpecify(Mixed<i32>),
TwiceOrMore(Vec<Mixed<i32>>),
}
#[derive(Debug)]
pub struct MySequenceType {
pub text_before: Option<Text>,
pub content: MySequenceTypeContent,
}
#[derive(Debug)]
pub struct MySequenceTypeContent {
pub once: Mixed<i32>,
pub optional: Option<Mixed<i32>>,
pub once_specify: Mixed<i32>,
pub twice_or_more: Vec<Mixed<i32>>,
}Sourcepub const NILLABLE_TYPE_SUPPORT: Self
pub const NILLABLE_TYPE_SUPPORT: Self
Enable support for nillable types.
This will enable code generation for nillable types. This feature needs
to be used with caution, because support for nillable types when using
serde is quite limited.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Enable the NILLABLE_TYPE_SUPPORT feature only will result in the following code:
use xsd_parser_types::xml::Nillable;
#[derive(Debug)]
pub struct MyChoiceType {
pub content: MyChoiceTypeContent,
}
#[derive(Debug)]
pub enum MyChoiceTypeContent {
Once(i32),
Optional(Option<i32>),
OnceSpecify(i32),
TwiceOrMore(Vec<i32>),
}
#[derive(Debug)]
pub struct MySequenceType {
pub content: MySequenceTypeContent,
}
#[derive(Debug)]
pub struct MySequenceTypeContent {
pub once: Nillable<i32>,
pub optional: Option<Nillable<i32>>,
pub once_specify: i32,
pub twice_or_more: Vec<i32>,
}Sourcepub const ANY_TYPE_SUPPORT: Self
pub const ANY_TYPE_SUPPORT: Self
Enable support for xs:any types.
This will enable code generation for xs:any types. This feature needs
to be used with caution, because support for any types when using
serde is quite limited.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Enable the MIXED_TYPE_SUPPORT feature only will result in the following code:
use xsd_parser_types::xml::AnyElement;
#[derive(Debug)]
pub struct MyChoiceType {
pub content: MyChoiceTypeContent,
}
#[derive(Debug)]
pub enum MyChoiceTypeContent {
Once(i32),
Optional(Option<i32>),
OnceSpecify(i32),
TwiceOrMore(Vec<i32>),
Any(AnyElement),
}
#[derive(Debug)]
pub struct MySequenceType {
pub content: MySequenceTypeContent,
}
#[derive(Debug)]
pub struct MySequenceTypeContent {
pub once: i32,
pub optional: Option<i32>,
pub once_specify: i32,
pub twice_or_more: Vec<i32>,
pub any: AnyElement,
}Sourcepub const BUILD_IN_ABSOLUTE_PATHS: Self
pub const BUILD_IN_ABSOLUTE_PATHS: Self
Use absolute paths for build-in types and traits.
Using this flag will instruct the generator to use absolute paths
for build-in types and traits (e.g. usize, String or From) to
avoid naming conflicts with generated types.
§Examples
Consider the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.com"
targetNamespace="http://example.com">
<xs:complexType name="MyChoice" mixed="true">
<xs:choice>
<xs:element name="Once" type="xs:int" />
<xs:element name="Optional" type="xs:int" minOccurs="0" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:choice>
</xs:complexType>
<xs:complexType name="MySequence" mixed="true">
<xs:sequence>
<xs:element name="Once" type="xs:int" nillable="true" />
<xs:element name="Optional" type="xs:int" minOccurs="0" nillable="true" />
<xs:element name="OnceSpecify" type="xs:int" minOccurs="1" />
<xs:element name="TwiceOrMore" type="xs:int" minOccurs="2" maxOccurs="unbounded" />
<xs:any />
</xs:sequence>
</xs:complexType>
</xs:schema>Enable the BUILD_IN_ABSOLUTE_PATHS feature only will result in the following code:
#[derive(Debug)]
pub struct MyChoiceType {
pub content: MyChoiceTypeContent,
}
#[derive(Debug)]
pub enum MyChoiceTypeContent {
Once(::core::primitive::i32),
Optional(::core::option::Option<::core::primitive::i32>),
OnceSpecify(::core::primitive::i32),
TwiceOrMore(::std::vec::Vec<::core::primitive::i32>),
}
#[derive(Debug)]
pub struct MySequenceType {
pub content: MySequenceTypeContent,
}
#[derive(Debug)]
pub struct MySequenceTypeContent {
pub once: ::core::primitive::i32,
pub optional: ::core::option::Option<::core::primitive::i32>,
pub once_specify: ::core::primitive::i32,
pub twice_or_more: ::std::vec::Vec<::core::primitive::i32>,
}Sourcepub const ABSOLUTE_PATHS_INSTEAD_USINGS: Self
pub const ABSOLUTE_PATHS_INSTEAD_USINGS: Self
Use absolute paths instead of using directives for all non build-in types and traits.
Using this flag will instruct the generator to use absolute paths for non build-in and generated types and traits to avoid naming conflicts with other generated types.
This does not include build-in types (like usize, String or From),
to use absolute paths for these also, you have to add the
BUILD_IN_ABSOLUTE_PATHS as well.
Source§impl GeneratorFlags
impl GeneratorFlags
Sourcepub const fn bits(&self) -> u32
pub const fn bits(&self) -> u32
Get the underlying bits value.
The returned value is exactly the bits set in this flags value.
Sourcepub const fn from_bits(bits: u32) -> Option<Self>
pub const fn from_bits(bits: u32) -> Option<Self>
Convert from a bits value.
This method will return None if any unknown bits are set.
Sourcepub const fn from_bits_truncate(bits: u32) -> Self
pub const fn from_bits_truncate(bits: u32) -> Self
Convert from a bits value, unsetting any unknown bits.
Sourcepub const fn from_bits_retain(bits: u32) -> Self
pub const fn from_bits_retain(bits: u32) -> Self
Convert from a bits value exactly.
Sourcepub fn from_name(name: &str) -> Option<Self>
pub fn from_name(name: &str) -> Option<Self>
Get a flags value with the bits of a flag with the given name set.
This method will return None if name is empty or doesn’t
correspond to any named flag.
Sourcepub const fn intersects(&self, other: Self) -> bool
pub const fn intersects(&self, other: Self) -> bool
Whether any set bits in a source flags value are also set in a target flags value.
Sourcepub const fn contains(&self, other: Self) -> bool
pub const fn contains(&self, other: Self) -> bool
Whether all set bits in a source flags value are also set in a target flags value.
Sourcepub fn remove(&mut self, other: Self)
pub fn remove(&mut self, other: Self)
The intersection of a source flags value with the complement of a target flags value (&!).
This method is not equivalent to self & !other when other has unknown bits set.
remove won’t truncate other, but the ! operator will.
Sourcepub fn toggle(&mut self, other: Self)
pub fn toggle(&mut self, other: Self)
The bitwise exclusive-or (^) of the bits in two flags values.
Sourcepub fn set(&mut self, other: Self, value: bool)
pub fn set(&mut self, other: Self, value: bool)
Call insert when value is true or remove when value is false.
Sourcepub const fn intersection(self, other: Self) -> Self
pub const fn intersection(self, other: Self) -> Self
The bitwise and (&) of the bits in two flags values.
Sourcepub const fn union(self, other: Self) -> Self
pub const fn union(self, other: Self) -> Self
The bitwise or (|) of the bits in two flags values.
Sourcepub const fn difference(self, other: Self) -> Self
pub const fn difference(self, other: Self) -> Self
The intersection of a source flags value with the complement of a target flags value (&!).
This method is not equivalent to self & !other when other has unknown bits set.
difference won’t truncate other, but the ! operator will.
Sourcepub const fn symmetric_difference(self, other: Self) -> Self
pub const fn symmetric_difference(self, other: Self) -> Self
The bitwise exclusive-or (^) of the bits in two flags values.
Sourcepub const fn complement(self) -> Self
pub const fn complement(self) -> Self
The bitwise negation (!) of the bits in a flags value, truncating the result.
Source§impl GeneratorFlags
impl GeneratorFlags
Sourcepub const fn iter(&self) -> Iter<GeneratorFlags>
pub const fn iter(&self) -> Iter<GeneratorFlags>
Yield a set of contained flags values.
Each yielded flags value will correspond to a defined named flag. Any unknown bits will be yielded together as a final flags value.
Sourcepub const fn iter_names(&self) -> IterNames<GeneratorFlags>
pub const fn iter_names(&self) -> IterNames<GeneratorFlags>
Yield a set of contained named flags values.
This method is like iter, except only yields bits in contained named flags.
Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
Trait Implementations§
Source§impl Binary for GeneratorFlags
impl Binary for GeneratorFlags
Source§impl BitAnd for GeneratorFlags
impl BitAnd for GeneratorFlags
Source§impl BitAndAssign for GeneratorFlags
impl BitAndAssign for GeneratorFlags
Source§fn bitand_assign(&mut self, other: Self)
fn bitand_assign(&mut self, other: Self)
The bitwise and (&) of the bits in two flags values.
Source§impl BitOr for GeneratorFlags
impl BitOr for GeneratorFlags
Source§fn bitor(self, other: GeneratorFlags) -> Self
fn bitor(self, other: GeneratorFlags) -> Self
The bitwise or (|) of the bits in two flags values.
Source§type Output = GeneratorFlags
type Output = GeneratorFlags
| operator.Source§impl BitOrAssign for GeneratorFlags
impl BitOrAssign for GeneratorFlags
Source§fn bitor_assign(&mut self, other: Self)
fn bitor_assign(&mut self, other: Self)
The bitwise or (|) of the bits in two flags values.
Source§impl BitXor for GeneratorFlags
impl BitXor for GeneratorFlags
Source§impl BitXorAssign for GeneratorFlags
impl BitXorAssign for GeneratorFlags
Source§fn bitxor_assign(&mut self, other: Self)
fn bitxor_assign(&mut self, other: Self)
The bitwise exclusive-or (^) of the bits in two flags values.
Source§impl Clone for GeneratorFlags
impl Clone for GeneratorFlags
Source§fn clone(&self) -> GeneratorFlags
fn clone(&self) -> GeneratorFlags
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for GeneratorFlags
impl Debug for GeneratorFlags
Source§impl Extend<GeneratorFlags> for GeneratorFlags
impl Extend<GeneratorFlags> for GeneratorFlags
Source§fn extend<T: IntoIterator<Item = Self>>(&mut self, iterator: T)
fn extend<T: IntoIterator<Item = Self>>(&mut self, iterator: T)
The bitwise or (|) of the bits in each flags value.
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)Source§impl Flags for GeneratorFlags
impl Flags for GeneratorFlags
Source§const FLAGS: &'static [Flag<GeneratorFlags>]
const FLAGS: &'static [Flag<GeneratorFlags>]
Source§fn from_bits_retain(bits: u32) -> GeneratorFlags
fn from_bits_retain(bits: u32) -> GeneratorFlags
Source§fn contains_unknown_bits(&self) -> bool
fn contains_unknown_bits(&self) -> bool
true if any unknown bits are set.Source§fn from_bits_truncate(bits: Self::Bits) -> Self
fn from_bits_truncate(bits: Self::Bits) -> Self
Source§fn from_name(name: &str) -> Option<Self>
fn from_name(name: &str) -> Option<Self>
Source§fn iter_names(&self) -> IterNames<Self>
fn iter_names(&self) -> IterNames<Self>
Source§fn intersects(&self, other: Self) -> boolwhere
Self: Sized,
fn intersects(&self, other: Self) -> boolwhere
Self: Sized,
Source§fn contains(&self, other: Self) -> boolwhere
Self: Sized,
fn contains(&self, other: Self) -> boolwhere
Self: Sized,
Source§fn insert(&mut self, other: Self)where
Self: Sized,
fn insert(&mut self, other: Self)where
Self: Sized,
|) of the bits in two flags values.Source§fn remove(&mut self, other: Self)where
Self: Sized,
fn remove(&mut self, other: Self)where
Self: Sized,
&!). Read moreSource§fn toggle(&mut self, other: Self)where
Self: Sized,
fn toggle(&mut self, other: Self)where
Self: Sized,
^) of the bits in two flags values.Source§fn intersection(self, other: Self) -> Self
fn intersection(self, other: Self) -> Self
&) of the bits in two flags values.Source§fn difference(self, other: Self) -> Self
fn difference(self, other: Self) -> Self
&!). Read moreSource§fn symmetric_difference(self, other: Self) -> Self
fn symmetric_difference(self, other: Self) -> Self
^) of the bits in two flags values.Source§fn complement(self) -> Self
fn complement(self) -> Self
!) of the bits in a flags value, truncating the result.Source§impl FromIterator<GeneratorFlags> for GeneratorFlags
impl FromIterator<GeneratorFlags> for GeneratorFlags
Source§fn from_iter<T: IntoIterator<Item = Self>>(iterator: T) -> Self
fn from_iter<T: IntoIterator<Item = Self>>(iterator: T) -> Self
The bitwise or (|) of the bits in each flags value.
Source§impl IntoIterator for GeneratorFlags
impl IntoIterator for GeneratorFlags
Source§impl LowerHex for GeneratorFlags
impl LowerHex for GeneratorFlags
Source§impl Not for GeneratorFlags
impl Not for GeneratorFlags
Source§impl Octal for GeneratorFlags
impl Octal for GeneratorFlags
Source§impl PublicFlags for GeneratorFlags
impl PublicFlags for GeneratorFlags
Source§impl Sub for GeneratorFlags
impl Sub for GeneratorFlags
Source§fn sub(self, other: Self) -> Self
fn sub(self, other: Self) -> Self
The intersection of a source flags value with the complement of a target flags value (&!).
This method is not equivalent to self & !other when other has unknown bits set.
difference won’t truncate other, but the ! operator will.
Source§type Output = GeneratorFlags
type Output = GeneratorFlags
- operator.Source§impl SubAssign for GeneratorFlags
impl SubAssign for GeneratorFlags
Source§fn sub_assign(&mut self, other: Self)
fn sub_assign(&mut self, other: Self)
The intersection of a source flags value with the complement of a target flags value (&!).
This method is not equivalent to self & !other when other has unknown bits set.
difference won’t truncate other, but the ! operator will.