pub struct BTreeMap<K, V>where
K: Ord,{ /* private fields */ }Expand description
An ordered map based on a two-level B-Tree.
B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of comparisons necessary to find an element (log2n). However, in practice the way this is done is very inefficient for modern computer architectures. In particular, every element is stored in its own individually heap-allocated node. This means that every single insertion triggers a heap-allocation, and every single comparison should be a cache-miss. Since these are both notably expensive things to do in practice, we are forced to, at the very least, reconsider the BST strategy.
However, B-Trees are not as performant as they could be, since there still is a significant amount of pointer indirection, and, in Rust’s case, a linear search on the node level.
Our implementation restricts a B-Tree to only have two levels, and have zero pointer indirection, with data residing only in the second level. The first level is an array, sorted by each node’s maximum element. The second is where all the data is at, being a sorted array of sorted arrays of fixed size, 1024. Lookups are done in two steps, one binary search over the first level, and one over the second. This is significantly simpler than a regular B-Tree. The main tradeoff, is that insertion and deletion relies on always having to sort an array of size 1024. In practice, this is barely noticable, but still presents itself as a drawback significant enough to warrant considering not using this crate. Please, read the Readme in order to see benchmarking results.
Furthermore, it has a very efficient get-the-ith-element implementation, that is thousands(literally) of times faster than what is currently available in stdlib.
Iterators obtained from functions such as BTreeMap::iter, BTreeMap::values, or
BTreeMap::keys produce their items in order by key, and directly leverage Rust’s own
slice iterators, therefore being as fast as possible.
§Examples
use wt_indexset::BTreeMap;
// type inference lets us omit an explicit type signature (which
// would be `BTreeMap<&str, &str>` in this example).
let mut movie_reviews = BTreeMap::new();
// review some movies.
movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
movie_reviews.insert("Pulp Fiction", "Masterpiece.");
movie_reviews.insert("The Godfather", "Very enjoyable.");
movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot.");
// check for a specific one.
if !movie_reviews.contains_key("Les Misérables") {
println!("We've got {} reviews, but Les Misérables ain't one.",
movie_reviews.len());
}
// oops, this review has a lot of spelling mistakes, let's delete it.
movie_reviews.remove("The Blues Brothers");
// look up the values associated with some keys.
let to_find = ["Up!", "Office Space"];
for movie in &to_find {
match movie_reviews.get(movie) {
Some(review) => println!("{movie}: {review}"),
None => println!("{movie} is unreviewed.")
}
}
// Look up the value for a key (will panic if the key is not found).
println!("Movie review: {}", movie_reviews["Office Space"]);
// iterate over everything.
for (movie, review) in &movie_reviews {
println!("{movie}: \"{review}\"");
}A BTreeMap with a known list of items can be initialized from an array:
use wt_indexset::BTreeMap;
let solar_distance = BTreeMap::from_iter([
("Mercury", 0.4),
("Venus", 0.7),
("Earth", 1.0),
("Mars", 1.5),
]);Implementations§
Source§impl<K, V> BTreeMap<K, V>where
K: Ord,
impl<K, V> BTreeMap<K, V>where
K: Ord,
Sourcepub fn append(&mut self, other: &mut Self)
pub fn append(&mut self, other: &mut Self)
Moves all elements from other into self, leaving other empty.
If a key from other is already present in self, the respective
value from self will be overwritten with the respective value from other.
§Examples
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(1, "a");
a.insert(2, "b");
a.insert(3, "c"); // Note: Key (3) also present in b.
let mut b = BTreeMap::new();
b.insert(3, "d"); // Note: Key (3) also present in a.
b.insert(4, "e");
b.insert(5, "f");
a.append(&mut b);
assert_eq!(a.len(), 5);
assert_eq!(b.len(), 0);
assert_eq!(a[&1], "a");
assert_eq!(a[&2], "b");
assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
assert_eq!(a[&4], "e");
assert_eq!(a[&5], "f");Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clears the map, removing all elements.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());Sourcepub fn contains_key<Q>(&self, key: &Q) -> bool
pub fn contains_key<Q>(&self, key: &Q) -> bool
Returns true if the map contains a value for the specified key.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);Sourcepub fn first_key_value(&self) -> Option<(&K, &V)>
pub fn first_key_value(&self) -> Option<(&K, &V)>
Returns the first key-value pair in the map. The key in this pair is the minimum key in the map.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
assert_eq!(map.first_key_value(), None);
map.insert(1, "b");
map.insert(2, "a");
assert_eq!(map.first_key_value(), Some((&1, &"b")));Sourcepub fn get<Q>(&self, key: &Q) -> Option<&V>
pub fn get<Q>(&self, key: &Q) -> Option<&V>
Returns a reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);Sourcepub fn get_index(&self, idx: usize) -> Option<(&K, &V)>
pub fn get_index(&self, idx: usize) -> Option<(&K, &V)>
Returns the key-value pair currently residing at the given position.
§Examples
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
assert_eq!(map.get_index(0), Some((&1, &"a")));
assert_eq!(map.get_index(1), None);Sourcepub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
Returns the key-value pair corresponding to the supplied key.
The supplied key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);Sourcepub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
Returns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
*x = "b";
}
assert_eq!(map[&1], "b");Sourcepub fn get_mut_index(&mut self, index: usize) -> Option<&mut V>
pub fn get_mut_index(&mut self, index: usize) -> Option<&mut V>
Returns a mutable reference to the value at the designated index
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut_index(0) {
*x = "b";
}
assert_eq!(map[&1], "b");Sourcepub fn insert(&mut self, key: K, value: V) -> Option<V>
pub fn insert(&mut self, key: K, value: V) -> Option<V>
Inserts a key-value pair into the map.
If the map did not have this key present, None is returned.
If the map did have this key present, the value is updated, and the old
value is returned. The key is not updated, though; this matters for
types that can be == without being identical. See the module-level
documentation for more.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);
map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");Sourcepub fn into_keys(self) -> IntoKeys<K, V> ⓘ
pub fn into_keys(self) -> IntoKeys<K, V> ⓘ
Creates a consuming iterator visiting all the keys, in sorted order.
The map cannot be used after calling this.
The iterator element type is K.
§Examples
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(2, "b");
a.insert(1, "a");
let keys: Vec<i32> = a.into_keys().collect();
assert_eq!(keys, [1, 2]);Sourcepub fn into_values(self) -> IntoValues<K, V> ⓘ
pub fn into_values(self) -> IntoValues<K, V> ⓘ
Creates a consuming iterator visiting all the values, in order by key.
The map cannot be used after calling this.
The iterator element type is V.
§Examples
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(1, "hello");
a.insert(2, "goodbye");
let values: Vec<&str> = a.into_values().collect();
assert_eq!(values, ["hello", "goodbye"]);Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the map contains no elements.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());Sourcepub fn iter(&self) -> IterMap<'_, K, V> ⓘ
pub fn iter(&self) -> IterMap<'_, K, V> ⓘ
Gets an iterator over the entries of the map, sorted by key.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(3, "c");
map.insert(2, "b");
map.insert(1, "a");
for (key, value) in map.iter() {
println!("{key}: {value}");
}
let (first_key, first_value) = map.iter().next().unwrap();
assert_eq!((*first_key, *first_value), (1, "a"));Sourcepub fn iter_mut(&mut self) -> IterMut<'_, K, V> ⓘ
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> ⓘ
Gets a mutable iterator over the entries of the map, sorted by key.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::from_iter([
("a", 1),
("b", 2),
("c", 3),
]);
// add 10 to the value if the key isn't "a"
for (key, value) in map.iter_mut() {
if key != &"a" {
*value += 10;
}
}Sourcepub fn keys(&self) -> Keys<'_, K, V> ⓘ
pub fn keys(&self) -> Keys<'_, K, V> ⓘ
Gets an iterator over the keys of the map, in sorted order.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(2, "b");
a.insert(1, "a");
let keys: Vec<_> = a.keys().cloned().collect();
assert_eq!(keys, [1, 2]);Sourcepub fn last_key_value(&self) -> Option<(&K, &V)>
pub fn last_key_value(&self) -> Option<(&K, &V)>
Returns the last key-value pair in the map. The key in this pair is the maximum key in the map.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "b");
map.insert(2, "a");
assert_eq!(map.last_key_value(), Some((&2, &"a")));Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the map.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);Sourcepub fn new() -> Self
pub fn new() -> Self
Makes a new, empty BTreeMap.
Allocates a vec of capacity 1024.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
// entries can now be inserted into the empty map
map.insert(1, "a");Sourcepub fn with_maximum_node_size(maximum_node_size: usize) -> Self
pub fn with_maximum_node_size(maximum_node_size: usize) -> Self
Makes a new, empty BTreeSet with the given maximum node size. Allocates one vec with
the capacity set to be the specified node size.
§Examples
use wt_indexset::BTreeMap;
let mut set: BTreeMap<usize, usize> = BTreeMap::with_maximum_node_size(128);Sourcepub fn pop_first(&mut self) -> Option<(K, V)>
pub fn pop_first(&mut self) -> Option<(K, V)>
Removes and returns the first element in the map. The key of this element is the minimum key that was in the map.
§Examples
Draining elements in ascending order, while keeping a usable map each iteration.
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
map.insert(2, "b");
while let Some((key, _val)) = map.pop_first() {
assert!(map.iter().all(|(k, _v)| *k > key));
}
assert!(map.is_empty());Sourcepub fn pop_index(&mut self, index: usize) -> (K, V)
pub fn pop_index(&mut self, index: usize) -> (K, V)
Removes the i-th element from the map and returns it, if any.
§Examples
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1,"a");
map.insert(2, "b");
assert_eq!(map.pop_index(0), (1, "a"));
assert_eq!(map.pop_index(0), (2, "b"));
assert!(map.is_empty());Sourcepub fn pop_last(&mut self) -> Option<(K, V)>
pub fn pop_last(&mut self) -> Option<(K, V)>
Removes and returns the last element in the map. The key of this element is the maximum key that was in the map.
§Examples
Draining elements in descending order, while keeping a usable map each iteration.
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
map.insert(2, "b");
while let Some((key, _val)) = map.pop_last() {
assert!(map.iter().all(|(k, _v)| *k < key));
}
assert!(map.is_empty());Sourcepub fn range<Q, R>(&self, range: R) -> RangeMap<'_, K, V> ⓘ
pub fn range<Q, R>(&self, range: R) -> RangeMap<'_, K, V> ⓘ
Constructs a double-ended iterator over a sub-range of elements in the map.
The simplest way is to use the range syntax min..max, thus range(min..max) will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>), so for example
range((Excluded(4), Included(10))) will yield a left-exclusive, right-inclusive
range from 4 to 10.
§Panics
Panics if range start > end.
Panics if range start == end and both bounds are Excluded.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
use std::ops::Bound::Included;
let mut map = BTreeMap::new();
map.insert(3, "a");
map.insert(5, "b");
map.insert(8, "c");
for (&key, &value) in map.range((Included(&4), Included(&8))) {
println!("{key}: {value}");
}
assert_eq!(Some((&5, &"b")), map.range(4..).next());pub fn range_idx<R>(&self, range: R) -> RangeMap<'_, K, V> ⓘwhere
R: RangeBounds<usize>,
Sourcepub fn range_mut<Q, R>(&mut self, range: R) -> RangeMut<'_, K, V> ⓘ
pub fn range_mut<Q, R>(&mut self, range: R) -> RangeMut<'_, K, V> ⓘ
Constructs a mutable double-ended iterator over a sub-range of elements in the map.
The simplest way is to use the range syntax min..max, thus range(min..max) will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>), so for example
range((Excluded(4), Included(10))) will yield a left-exclusive, right-inclusive
range from 4 to 10.
§Panics
Panics if range start > end.
Panics if range start == end and both bounds are Excluded.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map: BTreeMap<&str, i32> =
[("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].into();
for (_, balance) in map.range_mut("B".."Cheryl") {
*balance += 100;
}
for (name, balance) in &map {
println!("{name} => {balance}");
}pub fn range_mut_idx<R>(&mut self, range: R) -> RangeMut<'_, K, V> ⓘwhere
R: RangeBounds<usize>,
Sourcepub fn remove<Q>(&mut self, key: &Q) -> Option<V>
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
Removes a key from the map, returning the value at the key if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);Sourcepub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
Removes a key from the map, returning the stored key and value if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove_entry(&1), None);Sourcepub fn retain<F, Q>(&mut self, f: F)
pub fn retain<F, Q>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all pairs (k, v) for which f(&k, &mut v) returns false.
The elements are visited in ascending key order.
§Examples
use wt_indexset::BTreeMap;
let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
// Keep only the elements with even-numbered keys.
map.retain(|&k, _| k % 2 == 0);
assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));Sourcepub fn split_off<Q>(&mut self, key: &Q) -> Self
pub fn split_off<Q>(&mut self, key: &Q) -> Self
Splits the collection into two at the given key. Returns everything after the given key, including the key.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(1, "a");
a.insert(2, "b");
a.insert(3, "c");
a.insert(17, "d");
a.insert(41, "e");
let b = a.split_off(&3);
assert_eq!(a.len(), 2);
assert_eq!(b.len(), 3);
assert_eq!(a[&1], "a");
assert_eq!(a[&2], "b");
assert_eq!(b[&3], "c");
assert_eq!(b[&17], "d");
assert_eq!(b[&41], "e");Sourcepub fn values(&self) -> Values<'_, K, V> ⓘ
pub fn values(&self) -> Values<'_, K, V> ⓘ
Gets an iterator over the values of the map, in order by key.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(1, "hello");
a.insert(2, "goodbye");
let values: Vec<&str> = a.values().cloned().collect();
assert_eq!(values, ["hello", "goodbye"]);Sourcepub fn values_mut(&mut self) -> ValuesMut<'_, K, V> ⓘ
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> ⓘ
Gets a mutable iterator over the values of the map, in order by key.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
let mut a = BTreeMap::new();
a.insert(1, String::from("hello"));
a.insert(2, String::from("goodbye"));
for value in a.values_mut() {
value.push_str("!");
}
let values: Vec<String> = a.values().cloned().collect();
assert_eq!(values, [String::from("hello!"),
String::from("goodbye!")]);Sourcepub fn entry(&mut self, key: K) -> Entry<'_, K, V>where
K: Ord,
pub fn entry(&mut self, key: K) -> Entry<'_, K, V>where
K: Ord,
Gets the given key’s corresponding entry in the map for in-place manipulation.
§Examples
Basic usage:
use std::collections::BTreeMap;
let mut count: BTreeMap<&str, usize> = BTreeMap::new();
// count the number of occurrences of letters in the vec
for x in ["a", "b", "a", "c", "a", "b"] {
count.entry(x).and_modify(|curr| *curr += 1).or_insert(1);
}
assert_eq!(count["a"], 3);
assert_eq!(count["b"], 2);
assert_eq!(count["c"], 1);Sourcepub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V>>where
K: Ord,
pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V>>where
K: Ord,
Returns the first entry in the map for in-place manipulation. The key of this entry is the minimum key in the map.
§Examples
use std::collections::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
map.insert(2, "b");
if let Some(mut entry) = map.first_entry() {
if *entry.key() > 0 {
entry.insert("first");
}
}
assert_eq!(*map.get(&1).unwrap(), "first");
assert_eq!(*map.get(&2).unwrap(), "b");Sourcepub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V>>where
K: Ord,
pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V>>where
K: Ord,
Returns the last entry in the map for in-place manipulation. The key of this entry is the maximum key in the map.
§Examples
use std::collections::BTreeMap;
let mut map = BTreeMap::new();
map.insert(1, "a");
map.insert(2, "b");
if let Some(mut entry) = map.last_entry() {
if *entry.key() > 0 {
entry.insert("last");
}
}
assert_eq!(*map.get(&1).unwrap(), "a");
assert_eq!(*map.get(&2).unwrap(), "last");Sourcepub fn lower_bound<Q>(&self, bound: Bound<&Q>) -> CursorMap<'_, K, V>
pub fn lower_bound<Q>(&self, bound: Bound<&Q>) -> CursorMap<'_, K, V>
Returns a Cursor pointing at the first element that is above the
given bound.
If no such element exists then a cursor pointing at the “ghost” non-element is returned.
Passing Bound::Unbounded will return a cursor pointing at the first
element of the map.
§Examples
Basic usage:
use wt_indexset::BTreeMap;
use std::ops::Bound;
let mut a = BTreeMap::new();
a.insert(1, "a");
a.insert(2, "b");
a.insert(3, "c");
a.insert(4, "c");
let cursor = a.lower_bound(Bound::Excluded(&2));
assert_eq!(cursor.key(), Some(&3));Sourcepub fn rank<Q>(&self, value: &Q) -> usize
pub fn rank<Q>(&self, value: &Q) -> usize
Returns the position in which the given element would fall in the already-existing sorted order.
The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.
§Examples
use wt_indexset::BTreeMap;
let set = BTreeMap::from_iter([(1, "a"), (2, "b"), (3, "c")]);
assert_eq!(set.rank(&1), 0);
assert_eq!(set.rank(&3), 2);
assert_eq!(set.rank(&4), 3);
assert_eq!(set.rank(&100), 3);