write_fonts/tables/cmap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
//! the [cmap] table
//!
//! [cmap]: https://docs.microsoft.com/en-us/typography/opentype/spec/cmap
include!("../../generated/generated_cmap.rs");
use std::collections::HashMap;
use crate::util::SearchRange;
// https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#windows-platform-platform-id--3
const WINDOWS_BMP_ENCODING: u16 = 1;
const WINDOWS_FULL_REPERTOIRE_ENCODING: u16 = 10;
// https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#unicode-platform-platform-id--0
const UNICODE_BMP_ENCODING: u16 = 3;
const UNICODE_FULL_REPERTOIRE_ENCODING: u16 = 4;
impl CmapSubtable {
/// Create a new format 4 subtable
///
/// Returns `None` if none of the input chars are in the BMP (i.e. have
/// codepoints <= 0xFFFF.)
///
/// Invariants:
///
/// - Inputs must be sorted and deduplicated.
/// - All `GlyphId`s must be 16-bit
fn create_format_4(mappings: &[(char, GlyphId)]) -> Option<Self> {
let mut end_code = Vec::with_capacity(mappings.len() + 1);
let mut start_code = Vec::with_capacity(mappings.len() + 1);
let mut id_deltas = Vec::with_capacity(mappings.len() + 1);
let mut id_range_offsets = Vec::with_capacity(mappings.len() + 1);
let mut glyph_ids = Vec::new();
let segments = Format4SegmentComputer::new(mappings).compute();
assert!(mappings.iter().all(|(_, g)| g.to_u32() <= 0xFFFF));
if segments.is_empty() {
// no chars in BMP
return None;
}
let n_segments = segments.len() + 1;
for (i, segment) in segments.into_iter().enumerate() {
let start = mappings[segment.start_ix].0;
let end = mappings[segment.end_ix].0;
start_code.push(start as u32 as u16);
end_code.push(end as u32 as u16);
if let Some(delta) = segment.id_delta {
// "The idDelta arithmetic is modulo 65536":
let delta = i16::try_from(delta)
.unwrap_or_else(|_| delta.rem_euclid(0x10000).try_into().unwrap());
id_deltas.push(delta);
id_range_offsets.push(0u16);
} else {
// if the deltas for a range are not identical, we rely on the
// explicit glyph_ids array.
//
// The logic here is based on the memory layout of the table:
// because the glyph_id array follows the id_range_offsets array,
// the id_range_offsets array essentially stores a memory offset.
let current_n_ids = glyph_ids.len();
let n_following_segments = n_segments - i;
// number of bytes from the id_range_offset value to the glyph id
// for this segment, in the glyph_ids array
let id_range_offset = (n_following_segments + current_n_ids) * u16::RAW_BYTE_LEN;
id_deltas.push(0);
id_range_offsets.push(id_range_offset.try_into().unwrap());
glyph_ids.extend(
mappings[segment.start_ix..=segment.end_ix]
.iter()
.map(|(_, gid)| u16::try_from(gid.to_u32()).expect("checked before now")),
)
}
}
// add the final segment:
end_code.push(0xFFFF);
start_code.push(0xFFFF);
id_deltas.push(1);
id_range_offsets.push(0);
Some(Self::format_4(
0,
end_code,
start_code,
id_deltas,
id_range_offsets,
glyph_ids,
))
}
/// Create a new format 12 `CmapSubtable` from a list of `(char, GlyphId)` pairs.
///
/// The pairs are expected to be already sorted by chars.
/// In case of duplicate chars, the last one wins.
fn create_format_12(mappings: &[(char, GlyphId)]) -> Self {
let (mut char_codes, gids): (Vec<u32>, Vec<u32>) = mappings
.iter()
.map(|(cp, gid)| (*cp as u32, gid.to_u32()))
.unzip();
let cmap: HashMap<_, _> = char_codes.iter().cloned().zip(gids).collect();
char_codes.dedup();
// we know we have at least one non-BMP char_code > 0xFFFF so unwrap is safe
let mut start_char_code = *char_codes.first().unwrap();
let mut start_glyph_id = cmap[&start_char_code];
let mut last_glyph_id = start_glyph_id.wrapping_sub(1);
let mut last_char_code = start_char_code.wrapping_sub(1);
let mut groups = Vec::new();
for char_code in char_codes {
let glyph_id = cmap[&char_code];
if glyph_id != last_glyph_id.wrapping_add(1)
|| char_code != last_char_code.wrapping_add(1)
{
groups.push((start_char_code, last_char_code, start_glyph_id));
start_char_code = char_code;
start_glyph_id = glyph_id;
}
last_glyph_id = glyph_id;
last_char_code = char_code;
}
groups.push((start_char_code, last_char_code, start_glyph_id));
let seq_map_groups = groups
.into_iter()
.map(|(start_char, end_char, gid)| SequentialMapGroup::new(start_char, end_char, gid))
.collect::<Vec<_>>();
CmapSubtable::format_12(
0, // 'lang' set to zero for all 'cmap' subtables whose platform IDs are other than Macintosh
seq_map_groups,
)
}
}
/// A conflicting Cmap definition, one char is mapped to multiple distinct GlyphIds.
///
/// If there are multiple conflicting mappings, one is chosen arbitrarily.
/// gid1 is less than gid2.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CmapConflict {
ch: char,
gid1: GlyphId,
gid2: GlyphId,
}
impl std::fmt::Display for CmapConflict {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let ch32 = self.ch as u32;
write!(
f,
"Cannot map {:?} (U+{ch32:04X}) to two different glyph ids: {} and {}",
self.ch, self.gid1, self.gid2
)
}
}
impl std::error::Error for CmapConflict {}
impl Cmap {
/// Generates a ['cmap'] that is expected to work in most modern environments.
///
/// The input is not required to be sorted.
///
/// This emits [format 4] and [format 12] subtables, respectively for the
/// Basic Multilingual Plane and Full Unicode Repertoire.
///
/// Also see: <https://learn.microsoft.com/en-us/typography/opentype/spec/recom#cmap-table>
///
/// [`cmap`]: https://learn.microsoft.com/en-us/typography/opentype/spec/cmap
/// [format 4]: https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#format-4-segment-mapping-to-delta-values
/// [format 12]: https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#format-12-segmented-coverage
pub fn from_mappings(
mappings: impl IntoIterator<Item = (char, GlyphId)>,
) -> Result<Cmap, CmapConflict> {
let mut mappings: Vec<_> = mappings.into_iter().collect();
mappings.sort();
mappings.dedup();
if let Some((ch, gid1, gid2)) =
mappings
.iter()
.zip(mappings.iter().skip(1))
.find_map(|((c1, g1), (c2, g2))| {
(c1 == c2 && g1 != g2).then(|| (*c1, *g1.min(g2), *g1.max(g2)))
})
{
return Err(CmapConflict { ch, gid1, gid2 });
}
let mut uni_records = Vec::new(); // platform 0
let mut win_records = Vec::new(); // platform 3
// if there are characters in the Unicode Basic Multilingual Plane (U+0000 to U+FFFF)
// we need to emit format 4 subtables
let bmp_subtable = CmapSubtable::create_format_4(&mappings);
if let Some(bmp_subtable) = bmp_subtable {
// Absent a strong signal to do otherwise, match fontmake/fonttools
// Since both Windows and Unicode platform tables use the same subtable they are
// almost entirely byte-shared
// See https://github.com/googlefonts/fontmake-rs/issues/251
uni_records.push(EncodingRecord::new(
PlatformId::Unicode,
UNICODE_BMP_ENCODING,
bmp_subtable.clone(),
));
win_records.push(EncodingRecord::new(
PlatformId::Windows,
WINDOWS_BMP_ENCODING,
bmp_subtable,
));
}
// If there are any supplementary-plane characters (U+10000 to U+10FFFF) we also
// emit format 12 subtables
if mappings.iter().any(|(cp, _)| *cp > '\u{FFFF}') {
let full_repertoire_subtable = CmapSubtable::create_format_12(&mappings);
// format 12 subtables are also going to be byte-shared, just like above
uni_records.push(EncodingRecord::new(
PlatformId::Unicode,
UNICODE_FULL_REPERTOIRE_ENCODING,
full_repertoire_subtable.clone(),
));
win_records.push(EncodingRecord::new(
PlatformId::Windows,
WINDOWS_FULL_REPERTOIRE_ENCODING,
full_repertoire_subtable,
));
}
// put encoding records in order of (platform id, encoding id):
// - Unicode (0), BMP (3)
// - Unicode (0), full repertoire (4)
// - Windows (3), BMP (1)
// - Windows (3), full repertoire (10)
Ok(Cmap::new(
uni_records.into_iter().chain(win_records).collect(),
))
}
}
// a helper for computing efficient segments for cmap format 4
struct Format4SegmentComputer<'a> {
mappings: &'a [(char, GlyphId)],
/// The start index of the current segment, during iteration
seg_start: usize,
/// tracks whether the current segment has ordered gids
gids_in_order: bool,
}
#[derive(Clone, Copy, Debug)]
struct Format4Segment {
// indices are into the source mappings
start_ix: usize,
end_ix: usize,
start_char: char,
end_char: char,
id_delta: Option<i32>,
}
impl Format4Segment {
fn len(&self) -> usize {
self.end_ix - self.start_ix + 1
}
// cost in bytes of this segment.
fn cost(&self) -> usize {
// a segment always costs 4 u16s (end, start, delta_id, id_range_offset)
const BASE_COST: usize = 4 * u16::RAW_BYTE_LEN;
if self.id_delta.is_some() {
BASE_COST
} else {
// and if there is not a common id_delta, we also need to add an item
// to the glyph_id_array for each char in the segment
BASE_COST + self.len() * u16::RAW_BYTE_LEN
}
}
/// `true` if we can merge other into self (other must follow self)
fn can_combine(&self, next: &Self) -> bool {
self.end_char as u32 + 1 == next.start_char as u32
}
/// Return `true` if we should combine this segment with the previous one.
///
/// The case that matters here is when there is a segment with contiguous
/// GIDs and with a char range that is immediately adjacent to the previous
/// segment.
fn should_combine(&self, prev: &Self, next: Option<&Self>) -> bool {
if !prev.can_combine(self) {
return false;
}
// first we just consider the previous item. If our combined cost
// is lower than our separate cost, we will merge.
let combined_cost = prev.combine(self).cost();
let separate_cost = prev.cost() + self.cost();
if combined_cost < separate_cost {
return true;
}
// finally, if we are also char-contiguous with the next segment,
// then by construction it means if we merge now we will also merge
// with the next segment (since this current gid-contiguous segment
// is the reason we aren't all one big segment already) and so we need
// to also check that.
//
// Although the implementation is different, the logic is very similar in
// fonttools: https://github.com/fonttools/fonttools/blob/081d6a27ab8/Lib/fontTools/ttLib/tables/_c_m_a_p.py#L828
//
// As an example, consider a segment with 5 contiguous gids.
//
// This segment costs 8 bytes to encode; because the gids are contiguous
// we can use the `id_delta` field to represent them all.
//
// As an example, consider the following three segments:
//
// chrs [1 2] [3 4 5 6 7] [8 9]
// GIDs [3 1] [4 5 6 7 8] [2 9]
// cost 12 8 12
//
// the first and last segments each have len == 2. The GIDs are not
// contiguous, so they have to be encoded individually, which costs
// 2 bytes each. This means the total cost of these segments is 12:
// 8-bytes for the segment data, and 4 bytes for the gids.
//
// The middle segment has len == 5, but the GIDs are contiguous. This
// means that we can represent all the gids using the delta_id part of
// the segment, and encode the whole segment for 8 bytes.
//
// If we combine the first two segments, the new segment costs 22:
// 8 bytes for the segment, and 14 bytes for the 7 glyphs. This is
// more than the 20 bytes they cost separately.
//
// If we combine all three, though, the total cost is 26 (we add two
// more entries to the glyph_id array), which is better than the 32 bytes
// they cost separately.
//
// (note that we don't need to explicitly combine the next segment;
// it will happen automatically during the next loop)
if let Some(next) = next.filter(|next| self.can_combine(next)) {
let combined_cost = prev.combine(self).combine(next).cost();
let separate_cost = separate_cost + next.cost();
return combined_cost < separate_cost;
}
false
}
/// Combine this segment with one that immediately follows it.
///
/// The caller must ensure that the two segments are contiguous.
fn combine(&self, next: &Format4Segment) -> Format4Segment {
assert_eq!(next.start_ix, self.end_ix + 1,);
Format4Segment {
start_ix: self.start_ix,
start_char: self.start_char,
end_char: next.end_char,
end_ix: next.end_ix,
id_delta: None,
}
}
}
impl<'a> Format4SegmentComputer<'a> {
fn new(mappings: &'a [(char, GlyphId)]) -> Self {
// ignore chars above BMP:
let mappings = mappings
.iter()
.position(|(c, _)| u16::try_from(*c as u32).is_err())
.map(|bad_idx| &mappings[..bad_idx])
.unwrap_or(mappings);
Self {
mappings,
seg_start: 0,
gids_in_order: false,
}
}
/// a convenience method called from our iter in the various cases where
/// we emit a segment.
///
/// a 'seg_len' of 0 means start == end, e.g. a segment of one glyph.
fn make_segment(&mut self, seg_len: usize) -> Format4Segment {
// if start == end, we should always use a delta.
let use_delta = self.gids_in_order || seg_len == 0;
let start_ix = self.seg_start;
let end_ix = self.seg_start + seg_len;
let start_char = self.mappings[start_ix].0;
let end_char = self.mappings[end_ix].0;
let result = Format4Segment {
start_ix,
end_ix,
start_char,
end_char,
id_delta: self
.mappings
.get(self.seg_start)
.map(|(cp, gid)| gid.to_u32() as i32 - *cp as u32 as i32)
.filter(|_| use_delta),
};
self.seg_start += seg_len + 1;
self.gids_in_order = false;
result
}
/// Find the next possible segment.
///
/// A segment _must_ be a contiguous range of chars, but we where such a range
/// contains subranges that are also contiguous ranges of glyph ids, we will
/// split those subranges into separate segments.
fn next_possible_segment(&mut self) -> Option<Format4Segment> {
if self.seg_start == self.mappings.len() {
return None;
}
let Some(((mut prev_cp, mut prev_gid), rest)) =
self.mappings[self.seg_start..].split_first()
else {
// if this is the last element, make a final segment
return Some(self.make_segment(0));
};
for (i, (cp, gid)) in rest.iter().enumerate() {
// first: all segments must be a contiguous range of codepoints
if *cp as u32 != prev_cp as u32 + 1 {
return Some(self.make_segment(i));
}
let next_gid_is_in_order = prev_gid.to_u32() + 1 == gid.to_u32();
if !next_gid_is_in_order {
// next: if prev gids were ordered but this one isn't, end prev segment
if self.gids_in_order {
return Some(self.make_segment(i));
}
// and the funny case:
// if gids were not previously ordered but are now:
// - if i == 0, then this is the first item in a new segment;
// set gids_in_order and continue
// - if i > 0, we need to back up one
} else if !self.gids_in_order {
if i == 0 {
self.gids_in_order = true;
} else {
return Some(self.make_segment(i - 1));
}
}
prev_cp = *cp;
prev_gid = *gid;
}
// if we're done looping then create the last segment:
let last_idx = self.mappings.len() - 1;
Some(self.make_segment(last_idx - self.seg_start))
}
/// Compute an efficient set of segments.
///
/// - A segment is a contiguous range of chars.
/// - If all the chars in a segment share a common delta to their glyph ids,
/// we can encode them much more efficiently
/// - it's possible for a contiguous range of chars to contain a subrange
/// that share a common delta, where the overall range does not, e.g.
///
/// ```text
/// [a b c d e f g]
/// [9 3 6 7 8 2 1]
/// ```
/// (here a-g is a range containing the subrange c-e, which have a common
/// delta.)
///
/// This leads us to a reasonably intuitive algorithm: we start by greedily
/// splitting ranges up so we can consider all subranges with common deltas;
/// then we look at these one at a time, and combine them back together if
/// doing so saves space.
///
/// This differs from the python, which starts from larger segments and then
/// subdivides them, but the overall idea is the same.
///
/// <https://github.com/fonttools/fonttools/blob/f1d3e116d54f/Lib/fontTools/ttLib/tables/_c_m_a_p.py#L783>
fn compute(mut self) -> Vec<Format4Segment> {
let Some(first) = self.next_possible_segment() else {
return Default::default();
};
let mut result = vec![first];
// now we want to collect the segments, combining smaller segments where
// that leads to a size savings.
let mut next = self.next_possible_segment();
while let Some(current) = next.take() {
next = self.next_possible_segment();
let prev = result.last_mut().unwrap();
if current.should_combine(prev, next.as_ref()) {
*prev = prev.combine(¤t);
continue;
}
result.push(current);
}
result
}
}
impl Cmap4 {
fn compute_length(&self) -> u16 {
// https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#format-4-segment-mapping-to-delta-values
// there are always 8 u16 fields
const FIXED_SIZE: usize = 8 * u16::RAW_BYTE_LEN;
const PER_SEGMENT_LEN: usize = 4 * u16::RAW_BYTE_LEN;
let segment_len = self.end_code.len() * PER_SEGMENT_LEN;
let gid_len = self.glyph_id_array.len() * u16::RAW_BYTE_LEN;
(FIXED_SIZE + segment_len + gid_len)
.try_into()
.expect("cmap4 overflow")
}
fn compute_search_range(&self) -> u16 {
SearchRange::compute(self.end_code.len(), u16::RAW_BYTE_LEN).search_range
}
fn compute_entry_selector(&self) -> u16 {
SearchRange::compute(self.end_code.len(), u16::RAW_BYTE_LEN).entry_selector
}
fn compute_range_shift(&self) -> u16 {
SearchRange::compute(self.end_code.len(), u16::RAW_BYTE_LEN).range_shift
}
}
impl Cmap12 {
fn compute_length(&self) -> u32 {
// https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#format-12-segmented-coverage
const FIXED_SIZE: usize = 2 * u16::RAW_BYTE_LEN + 3 * u32::RAW_BYTE_LEN;
const PER_SEGMENT_LEN: usize = 3 * u32::RAW_BYTE_LEN;
(FIXED_SIZE + PER_SEGMENT_LEN * self.groups.len())
.try_into()
.unwrap()
}
}
#[cfg(test)]
mod tests {
use std::ops::RangeInclusive;
use font_types::GlyphId;
use read_fonts::{
tables::cmap::{Cmap, CmapSubtable, PlatformId},
FontData, FontRead,
};
use crate::{
dump_table,
tables::cmap::{
self as write, CmapConflict, UNICODE_BMP_ENCODING, UNICODE_FULL_REPERTOIRE_ENCODING,
WINDOWS_BMP_ENCODING, WINDOWS_FULL_REPERTOIRE_ENCODING,
},
};
use super::{Cmap12, SequentialMapGroup};
fn assert_generates_simple_cmap(mappings: Vec<(char, GlyphId)>) {
let cmap = write::Cmap::from_mappings(mappings).unwrap();
let bytes = dump_table(&cmap).unwrap();
let font_data = FontData::new(&bytes);
let cmap = Cmap::read(font_data).unwrap();
assert_eq!(2, cmap.encoding_records().len(), "{cmap:?}");
assert_eq!(
vec![
(PlatformId::Unicode, UNICODE_BMP_ENCODING),
(PlatformId::Windows, WINDOWS_BMP_ENCODING)
],
cmap.encoding_records()
.iter()
.map(|er| (er.platform_id(), er.encoding_id()))
.collect::<Vec<_>>(),
"{cmap:?}"
);
for encoding_record in cmap.encoding_records() {
let CmapSubtable::Format4(cmap4) = encoding_record.subtable(font_data).unwrap() else {
panic!("Expected a cmap4 in {encoding_record:?}");
};
// The spec example says entry_selector 4 but the calculation it gives seems to yield 2 (?)
assert_eq!(
(8, 8, 2, 0),
(
cmap4.seg_count_x2(),
cmap4.search_range(),
cmap4.entry_selector(),
cmap4.range_shift()
)
);
assert_eq!(cmap4.start_code(), &[10u16, 30u16, 153u16, 0xffffu16]);
assert_eq!(cmap4.end_code(), &[20u16, 90u16, 480u16, 0xffffu16]);
// The example starts at gid 1, we're starting at 0
assert_eq!(cmap4.id_delta(), &[-10i16, -19i16, -81i16, 1i16]);
assert_eq!(cmap4.id_range_offsets(), &[0u16, 0u16, 0u16, 0u16]);
}
}
fn simple_cmap_mappings() -> Vec<(char, GlyphId)> {
(10..=20)
.chain(30..=90)
.chain(153..=480)
.enumerate()
.map(|(idx, codepoint)| (char::from_u32(codepoint).unwrap(), GlyphId::new(idx as u32)))
.collect()
}
// https://learn.microsoft.com/en-us/typography/opentype/spec/cmap#format-4-segment-mapping-to-delta-values
// "map characters 10-20, 30-90, and 153-480 onto a contiguous range of glyph indices"
#[test]
fn generate_simple_cmap4() {
let mappings = simple_cmap_mappings();
assert_generates_simple_cmap(mappings);
}
#[test]
fn generate_cmap4_out_of_order_input() {
let mut ordered = simple_cmap_mappings();
let mut disordered = Vec::new();
while !ordered.is_empty() {
if ordered.len() % 2 == 0 {
disordered.insert(0, ordered.remove(0));
} else {
disordered.push(ordered.remove(0));
}
}
assert_ne!(ordered, disordered);
assert_generates_simple_cmap(disordered);
}
#[test]
fn generate_cmap4_large_values() {
let mut mappings = simple_cmap_mappings();
// Example from Texturina.
let codepoint = char::from_u32(0xa78b).unwrap();
let gid = GlyphId::new(153);
mappings.push((codepoint, gid));
let cmap = write::Cmap::from_mappings(mappings).unwrap();
let bytes = dump_table(&cmap).unwrap();
let font_data = FontData::new(&bytes);
let cmap = Cmap::read(font_data).unwrap();
assert_eq!(cmap.map_codepoint(codepoint), Some(gid));
}
#[test]
fn bytes_are_reused() {
// We emit extra encoding records assuming it's cheap. Make sure.
let mappings = simple_cmap_mappings();
let cmap_both = write::Cmap::from_mappings(mappings).unwrap();
assert_eq!(2, cmap_both.encoding_records.len(), "{cmap_both:?}");
let bytes_for_both = dump_table(&cmap_both).unwrap().len();
for i in 0..cmap_both.encoding_records.len() {
let mut cmap = cmap_both.clone();
cmap.encoding_records.remove(i);
let bytes_for_one = dump_table(&cmap).unwrap().len();
assert_eq!(bytes_for_one + 8, bytes_for_both);
}
}
fn non_bmp_cmap_mappings() -> Vec<(char, GlyphId)> {
// contains four sequential map groups
vec![
// first group
('\u{1f12f}', GlyphId::new(481)),
('\u{1f130}', GlyphId::new(482)),
// char 0x1f131 skipped, starts second group
('\u{1f132}', GlyphId::new(483)),
('\u{1f133}', GlyphId::new(484)),
// gid 485 skipped, starts third group
('\u{1f134}', GlyphId::new(486)),
// char 0x1f135 skipped, starts fourth group. identical duplicate bindings are fine
('\u{1f136}', GlyphId::new(488)),
('\u{1f136}', GlyphId::new(488)),
]
}
fn bmp_and_non_bmp_cmap_mappings() -> Vec<(char, GlyphId)> {
let mut mappings = simple_cmap_mappings();
mappings.extend(non_bmp_cmap_mappings());
mappings
}
fn assert_cmap12_groups(
font_data: FontData,
cmap: &Cmap,
record_index: usize,
expected: &[(u32, u32, u32)],
) {
let rec = &cmap.encoding_records()[record_index];
let CmapSubtable::Format12(subtable) = rec.subtable(font_data).unwrap() else {
panic!("Expected a cmap12 in {rec:?}");
};
let groups = subtable
.groups()
.iter()
.map(|g| (g.start_char_code(), g.end_char_code(), g.start_glyph_id()))
.collect::<Vec<_>>();
assert_eq!(groups.len(), expected.len());
assert_eq!(groups, expected);
}
#[test]
fn generate_cmap4_and_12() {
let mappings = bmp_and_non_bmp_cmap_mappings();
let cmap = write::Cmap::from_mappings(mappings).unwrap();
let bytes = dump_table(&cmap).unwrap();
let font_data = FontData::new(&bytes);
let cmap = Cmap::read(font_data).unwrap();
assert_eq!(4, cmap.encoding_records().len(), "{cmap:?}");
assert_eq!(
vec![
(PlatformId::Unicode, UNICODE_BMP_ENCODING),
(PlatformId::Unicode, UNICODE_FULL_REPERTOIRE_ENCODING),
(PlatformId::Windows, WINDOWS_BMP_ENCODING),
(PlatformId::Windows, WINDOWS_FULL_REPERTOIRE_ENCODING)
],
cmap.encoding_records()
.iter()
.map(|er| (er.platform_id(), er.encoding_id()))
.collect::<Vec<_>>(),
"{cmap:?}"
);
let encoding_records = cmap.encoding_records();
let first_rec = &encoding_records[0];
assert!(
matches!(
first_rec.subtable(font_data).unwrap(),
CmapSubtable::Format4(_)
),
"Expected a cmap4 in {first_rec:?}"
);
// (start_char_code, end_char_code, start_glyph_id)
let expected_groups = vec![
(10, 20, 0),
(30, 90, 11),
(153, 480, 72),
(0x1f12f, 0x1f130, 481),
(0x1f132, 0x1f133, 483),
(0x1f134, 0x1f134, 486),
(0x1f136, 0x1f136, 488),
];
assert_cmap12_groups(font_data, &cmap, 1, &expected_groups);
assert_cmap12_groups(font_data, &cmap, 3, &expected_groups);
}
#[test]
fn generate_cmap12_only() {
let mappings = non_bmp_cmap_mappings();
let cmap = write::Cmap::from_mappings(mappings).unwrap();
let bytes = dump_table(&cmap).unwrap();
let font_data = FontData::new(&bytes);
let cmap = Cmap::read(font_data).unwrap();
assert_eq!(2, cmap.encoding_records().len(), "{cmap:?}");
assert_eq!(
vec![
(PlatformId::Unicode, UNICODE_FULL_REPERTOIRE_ENCODING),
(PlatformId::Windows, WINDOWS_FULL_REPERTOIRE_ENCODING)
],
cmap.encoding_records()
.iter()
.map(|er| (er.platform_id(), er.encoding_id()))
.collect::<Vec<_>>(),
"{cmap:?}"
);
// (start_char_code, end_char_code, start_glyph_id)
let expected_groups = vec![
(0x1f12f, 0x1f130, 481),
(0x1f132, 0x1f133, 483),
(0x1f134, 0x1f134, 486),
(0x1f136, 0x1f136, 488),
];
assert_cmap12_groups(font_data, &cmap, 0, &expected_groups);
assert_cmap12_groups(font_data, &cmap, 1, &expected_groups);
}
#[test]
fn multiple_mappings_fails() {
let mut mappings = non_bmp_cmap_mappings();
// add an additional mapping to a different glyphId
let (ch, gid1) = mappings[0];
let gid2 = GlyphId::new(gid1.to_u32() + 1);
mappings.push((ch, gid2));
let result = write::Cmap::from_mappings(mappings);
assert_eq!(result, Err(CmapConflict { ch, gid1, gid2 }))
}
struct MappingBuilder {
mappings: Vec<(char, GlyphId)>,
next_gid: u16,
}
impl Default for MappingBuilder {
fn default() -> Self {
Self {
mappings: Default::default(),
next_gid: 1,
}
}
}
impl MappingBuilder {
fn extend(mut self, range: impl IntoIterator<Item = char>) -> Self {
for c in range {
let gid = GlyphId::new(self.next_gid as _);
self.mappings.push((c, gid));
self.next_gid += 1;
}
self
}
// compute the segments for the mapping
fn compute(&mut self) -> Vec<RangeInclusive<char>> {
self.mappings.sort();
super::Format4SegmentComputer::new(&self.mappings)
.compute()
.into_iter()
.map(|seg| self.mappings[seg.start_ix].0..=self.mappings[seg.end_ix].0)
.collect()
}
fn build(mut self) -> Vec<(char, GlyphId)> {
self.mappings.sort();
self.mappings
}
}
#[test]
fn f4_segments_simple() {
let mut one_big_discontiguous_mapping = MappingBuilder::default().extend(('a'..='z').rev());
assert_eq!(one_big_discontiguous_mapping.compute(), ['a'..='z']);
}
#[test]
fn f4_segments_combine_small() {
let mut mapping = MappingBuilder::default()
// backwards so gids are not contiguous
.extend(['e', 'd', 'c', 'b', 'a'])
// these two contiguous ranges aren't worth the cost, should merge
// into the first and last respectively
.extend('f'..='g')
.extend('m'..='n')
.extend(('o'..='z').rev());
assert_eq!(mapping.compute(), ['a'..='g', 'm'..='z']);
}
#[test]
fn f4_segments_keep() {
let mut mapping = MappingBuilder::default()
.extend('a'..='m')
.extend(['o', 'n']);
assert_eq!(mapping.compute(), ['a'..='m', 'n'..='o']);
}
fn expect_f4(mapping: &[(char, GlyphId)]) -> super::Cmap4 {
let format4 = super::CmapSubtable::create_format_4(mapping).unwrap();
let super::CmapSubtable::Format4(format4) = format4 else {
panic!("O_o")
};
format4
}
// roundtrip the mapping from read-fonts
fn get_read_mapping(table: &super::Cmap4) -> Vec<(char, GlyphId)> {
let bytes = dump_table(table).unwrap();
let readcmap = read_fonts::tables::cmap::Cmap4::read(bytes.as_slice().into()).unwrap();
readcmap
.iter()
.map(|(c, gid)| (char::from_u32(c).unwrap(), gid))
.collect::<Vec<_>>()
}
#[test]
fn f4_segment_len_one_uses_delta() {
// if a segment is length one, we should always use the delta, since it's free.
let mapping = MappingBuilder::default()
.extend(['a', 'z', '1', '9'])
.build();
let format4 = expect_f4(&mapping);
assert_eq!(format4.end_code.len(), 5); // 4 + 0xffff
assert!(format4.glyph_id_array.is_empty());
assert!(format4.id_delta.iter().all(|d| *d != 0));
}
#[test]
fn f4_efficiency() {
// one of these ranges should use id_delta, the other should use glyph id array
let mapping = MappingBuilder::default()
.extend('A'..='Z')
.extend(('a'..='z').rev())
.build();
let format4 = expect_f4(&mapping);
assert_eq!(
format4.start_code,
['A' as u32 as u16, 'a' as u32 as u16, 0xffff]
);
assert_eq!(
format4.end_code,
['Z' as u32 as u16, 'z' as u32 as u16, 0xffff]
);
assert_eq!(format4.id_delta, [-64, 0, 1]);
assert_eq!(format4.id_range_offsets, [0, 4, 0]);
let read_mapping = get_read_mapping(&format4);
assert_eq!(mapping.len(), read_mapping.len());
assert!(mapping == read_mapping);
}
#[test]
fn f4_kinda_real_world() {
// based on the first few hundred glyphs of oswald
let mapping = MappingBuilder::default()
.extend(['\r']) // CR
.extend('\x20'..='\x7e') // ascii space to tilde
.extend('\u{a0}'..='\u{ac}') // nbspace to logical not
.extend('\u{ae}'..='\u{17f}') // registered to long s
.extend(['\u{18f}', '\u{192}'])
.build();
let format4 = expect_f4(&mapping);
// we added 3 ranges + 3 individual glyphs above, + the final 0xffff
assert_eq!(format4.end_code.len(), 7);
let read_mapping = get_read_mapping(&format4);
assert_eq!(mapping.len(), read_mapping.len());
assert!(mapping == read_mapping);
}
#[test]
// a small ordered segment between two larger unordered segments;
// merging this correctly requires us to consider the next segment as well
fn f4_sandwich_segment() {
let mapping = MappingBuilder::default()
.extend(['\r'])
.extend(('\x20'..='\x27').rev()) // cost = 8*2 + 8 = 24
.extend('\x28'..='\x2c') // cost = 8
.extend(('\x2d'..='\x34').rev()) // cost = 6*2 + 8 = 20
// combined =
// (8 + 5 + 6) * 2 + 8 = 46
.extend('\x35'..='\x3e')
.build();
let format4 = expect_f4(&mapping);
assert_eq!(format4.end_code.len(), 4);
}
// test that we correctly encode array lengths exceeding u16::MAX
#[test]
fn cmap12_length_calculation() {
let more_than_16_bits = u16::MAX as u32 + 5;
let groups = (0..more_than_16_bits)
.map(|i| SequentialMapGroup::new(i, i, i))
.collect();
let cmap12 = Cmap12::new(0, groups);
let bytes = crate::dump_table(&cmap12).unwrap();
let read_it_back = Cmap12::read(bytes.as_slice().into()).unwrap();
assert_eq!(read_it_back.groups.len() as u32, more_than_16_bits);
}
}