1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
//! Building the ItemVariationStore
use std::{
collections::{BinaryHeap, HashMap, HashSet},
fmt::{Debug, Display},
};
use crate::tables::{
layout::VariationIndex,
variations::{ItemVariationData, ItemVariationStore, VariationRegion, VariationRegionList},
};
use indexmap::IndexMap;
type TemporaryDeltaSetId = u32;
/// A builder for the [ItemVariationStore].
///
/// This handles assigning VariationIndex values to unique sets of deltas and
/// grouping delta sets into [ItemVariationData] subtables.
#[derive(Clone, Debug)]
pub struct VariationStoreBuilder {
// region -> index map
all_regions: HashMap<VariationRegion, usize>,
delta_sets: DeltaSetStorage,
// must match fvar. We require the user to pass this in because we cannot
// infer it in the case where no deltas are added to the builder.
axis_count: u16,
}
/// A collection of delta sets.
#[derive(Clone, Debug)]
enum DeltaSetStorage {
// only for hvar: we do not deduplicate deltas, and store one per glyph id
Direct(Vec<DeltaSet>),
// the general case, where each delta gets a unique id
Deduplicated(IndexMap<DeltaSet, TemporaryDeltaSetId>),
}
/// A map from the temporary delta set identifiers to the final values.
///
/// This is generated when the [ItemVariationStore] is built; afterwards
/// any tables or records that contain VariationIndex tables need to be remapped.
#[derive(Clone, Debug, Default)]
pub struct VariationIndexRemapping {
map: HashMap<TemporaryDeltaSetId, VariationIndex>,
}
/// Remapping temporary delta set identifiers to the final values.
///
/// This is called after the [`ItemVariationStore`] has been built, at which
/// point any table containing a delta set index needs to be updated to point
/// to the final value.
///
/// This trait should be implemented by any table that contains delta set indices,
/// as well as for any of table containing such a table, which should recursively
/// call it on the relevant subtables.
pub trait RemapVariationIndices {
/// Remap any `TemporaryDeltaSetId`s to their final `VariationIndex` values
fn remap_variation_indices(&mut self, key_map: &VariationIndexRemapping);
}
/// Always sorted, so we can ensure equality
///
/// Each tuple is (region index, delta value)
#[derive(Clone, Debug, Default, Hash, PartialEq, Eq)]
struct DeltaSet(Vec<(u16, i32)>);
impl VariationStoreBuilder {
/// Create a builder that will optimize delta storage.
///
/// This is the general case. For HVAR, it is also possible to use the
/// glyph ids as implicit indices, which may be more efficient for some
/// data. To use implicit indices, use [`new_with_implicit_indices`] instead.
///
/// [`new_with_implicit_indices`]: VariationStoreBuilder::new_with_implicit_indices
pub fn new(axis_count: u16) -> Self {
Self {
axis_count,
delta_sets: DeltaSetStorage::Deduplicated(Default::default()),
all_regions: Default::default(),
}
}
/// Returns `true` if no deltas have been added to this builder
pub fn is_empty(&self) -> bool {
match &self.delta_sets {
DeltaSetStorage::Direct(val) => val.is_empty(),
DeltaSetStorage::Deduplicated(val) => val.is_empty(),
}
}
/// Create a builder that does not share deltas between entries.
///
/// This is used in HVAR, where it is possible to use glyph ids as the
/// 'inner index', and to generate a single ItemVariationData subtable
/// with one entry per item.
pub fn new_with_implicit_indices(axis_count: u16) -> Self {
VariationStoreBuilder {
axis_count,
all_regions: Default::default(),
delta_sets: DeltaSetStorage::Direct(Default::default()),
}
}
pub fn add_deltas<T: Into<i32>>(
&mut self,
deltas: Vec<(VariationRegion, T)>,
) -> TemporaryDeltaSetId {
let mut delta_set = Vec::with_capacity(deltas.len());
for (region, delta) in deltas {
let region_idx = self.canonical_index_for_region(region) as u16;
delta_set.push((region_idx, delta.into()));
}
delta_set.sort_unstable();
// treat a deltaset containing all zeros the same as an empty one;
// e.g. a glyph that only has one instance at the default location (no deltas)
// vs another that defines multiple instances but all of them are at the
// default location (all deltas are zero).
if delta_set.iter().all(|(_, delta)| *delta == 0) {
delta_set.clear();
}
self.delta_sets.add(DeltaSet(delta_set))
}
fn canonical_index_for_region(&mut self, region: VariationRegion) -> usize {
let next_idx = self.all_regions.len();
*self.all_regions.entry(region).or_insert(next_idx)
}
fn make_region_list(&self, subtables: &mut [Option<ItemVariationData>]) -> VariationRegionList {
// collect the set of region indices actually used by each ItemVariationData
let used_regions = subtables
.iter()
.flatten()
.flat_map(|var_data| var_data.region_indexes.iter())
.map(|idx| *idx as usize)
.collect::<HashSet<_>>();
// prune unused regions and keep track of old index to new index
let mut region_list = self
.all_regions
.iter()
.filter_map(|(reg, idx)| {
if used_regions.contains(idx) {
Some((idx, reg.to_owned()))
} else {
None
}
})
.collect::<Vec<_>>();
region_list.sort_unstable();
let mut new_regions = Vec::new();
let mut region_map = HashMap::new();
for (old_idx, reg) in region_list.into_iter() {
region_map.insert(*old_idx as u16, new_regions.len() as u16);
new_regions.push(reg);
}
// remap the region indexes in each subtable
for var_data in subtables.iter_mut().flatten() {
var_data.region_indexes = var_data
.region_indexes
.iter()
.map(|idx| region_map[idx])
.collect();
}
VariationRegionList::new(self.axis_count, new_regions)
}
fn encoder(&self) -> Encoder {
Encoder::new(&self.delta_sets, self.all_regions.len() as u16)
}
/// Build the `ItemVariationStore` table
///
/// This also returns a structure that can be used to remap the temporarily
/// assigned delta set Ids to their final `VariationIndex` values.
pub fn build(self) -> (ItemVariationStore, VariationIndexRemapping) {
let mut key_map = VariationIndexRemapping::default();
let mut subtables = if matches!(self.delta_sets, DeltaSetStorage::Direct(_)) {
vec![self.build_unoptimized(&mut key_map)]
} else {
let mut encoder = self.encoder();
encoder.optimize();
encoder.encode(&mut key_map)
};
let region_list = self.make_region_list(&mut subtables);
(ItemVariationStore::new(region_list, subtables), key_map)
}
/// Build a single ItemVariationData subtable
fn build_unoptimized(
&self,
key_map: &mut VariationIndexRemapping,
) -> Option<ItemVariationData> {
// first pick an encoding capable of representing all items:
let n_regions = self.all_regions.len() as u16;
let mut shape = RowShape(vec![ColumnBits::None; n_regions as usize]);
let mut temp = RowShape::default();
for (delta, _) in self.delta_sets.iter() {
temp.reuse(delta, n_regions);
if !shape.can_cover(&temp) {
shape = shape.merge(&temp);
}
}
// then encode everything with that encoding.
let encoding = Encoding {
shape,
deltas: self.delta_sets.iter().collect(),
};
debug_assert!(
encoding.deltas.len() <= u16::MAX as usize,
"unmapped variation store supports at most u16::MAX items"
);
encoding.encode(key_map, 0)
}
}
/// A context for encoding deltas into the final [`ItemVariationStore`].
///
/// This mostly exists so that we can write better tests.
struct Encoder<'a> {
encodings: Vec<Encoding<'a>>,
}
/// A set of deltas that share a shape.
struct Encoding<'a> {
shape: RowShape,
deltas: Vec<(&'a DeltaSet, TemporaryDeltaSetId)>,
}
/// A type for remapping delta sets during encoding.
///
/// This mapping applies to a single ItemVariationData table, with the regions
/// defined in the VariationRegionList in the parent table.
struct RegionMap {
/// A map from the canonical region indices (represented in the sorted
/// order of the map) to the ordering of the deltas in a particular
/// ItemVariationData table.
///
/// For each canonical index, we store the local (column) index and the bits
/// required to store that column.
regions_to_columns: Vec<(u16, ColumnBits)>,
n_active_regions: u16,
n_long_regions: u16,
long_words: bool,
}
/// Describes the compressability of a row of deltas across all variation regions.
///
/// fonttools calls this the 'characteristic' of a row.
///
/// We could get much fancier about how we represent this type, and avoid
/// allocation in most cases; but this is simple and works, so :shrug:
#[derive(Debug, Clone, Default, PartialEq, Eq, Hash, PartialOrd, Ord)]
struct RowShape(Vec<ColumnBits>);
//NOTE: we could do fancier bit packing here (fonttools uses four bits per
//column but I think the gains will be marginal)
/// The number of bits required to represent a given delta column.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum ColumnBits {
/// i.e. the value is zero
None = 0,
/// an i8
One = 1,
/// an i16
Two = 2,
/// an i32
Four = 4,
}
impl<'a> Encoder<'a> {
fn new(delta_map: &'a DeltaSetStorage, total_regions: u16) -> Self {
let mut shape = RowShape::default();
let mut encodings: IndexMap<_, Vec<_>> = Default::default();
for (delta, idx) in delta_map.iter() {
shape.reuse(delta, total_regions);
match encodings.get_mut(&shape) {
Some(items) => items.push((delta, idx)),
None => {
encodings.insert(shape.clone(), vec![(delta, idx)]);
}
}
}
let encodings = encodings
.into_iter()
.map(|(shape, deltas)| Encoding { shape, deltas })
.collect();
Encoder { encodings }
}
fn cost(&self) -> usize {
self.encodings.iter().map(Encoding::cost).sum()
}
/// Recursively combine encodings where doing so provides space savings.
///
/// This is a reimplementation of the [VarStore_optimize][fonttools] function
/// in fonttools, although it is not a direct port.
///
/// [fonttools]: https://github.com/fonttools/fonttools/blob/fb56e7b7c9715895b81708904c840875008adb9c/Lib/fontTools/varLib/varStore.py#L471
fn optimize(&mut self) {
let cost = self.cost();
log::trace!("optimizing {} encodings, {cost}B", self.encodings.len(),);
// a little helper for pretty-printing our todo list
struct DebugTodoList<'a>(&'a [Option<Encoding<'a>>]);
impl Debug for DebugTodoList<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Todo({} items", self.0.len())?;
for (i, enc) in self.0.iter().enumerate() {
if let Some(enc) = enc {
write!(f, "\n {i:>4}: {enc:?}")?;
}
}
writeln!(f, ")")
}
}
// temporarily take ownership of all the encodings
let to_process = std::mem::take(&mut self.encodings);
// convert to a vec of Option<Encoding>;
// we will replace items with None as they are combined
let mut to_process = to_process.into_iter().map(Option::Some).collect::<Vec<_>>();
// build up a priority list of the space savings from combining each pair
// of encodings
let mut queue = BinaryHeap::with_capacity(to_process.len());
for (i, red) in to_process.iter().enumerate() {
for (j, blue) in to_process.iter().enumerate().skip(i + 1) {
let gain = red.as_ref().unwrap().compute_gain(blue.as_ref().unwrap());
if gain > 0 {
log::trace!("adding ({i}, {j} ({gain})) to queue");
queue.push((gain, i, j));
}
}
}
// iteratively process each item in the queue
while let Some((_gain, i, j)) = queue.pop() {
if to_process[i].is_none() || to_process[j].is_none() {
continue;
}
// as items are combined, we leave `None` in the to_process list.
// This ensures that indicies are stable.
let (Some(mut to_update), Some(to_add)) = (
to_process.get_mut(i).and_then(Option::take),
to_process.get_mut(j).and_then(Option::take),
) else {
unreachable!("checked above")
};
log::trace!(
"combining {i}+{j} ({}, {} {_gain})",
to_update.shape,
to_add.shape
);
//NOTE: it is now possible that we have duplicate data. I'm not sure
//how likely this is? Not very likely? it would require one deltaset's
//regions to be a subset of another, with zeros for the missing axes?
to_update.merge_with(to_add);
let n = to_process.len(); // index we assign the combined encoding
let mut maybe_existing_encoding = None;
for (ii, opt_encoding) in to_process.iter_mut().enumerate() {
// does two things: skips empty indices, and also temporarily
// removes the item (we'll put it back unless we merge, below)
let Some(encoding) = opt_encoding.take() else {
continue;
};
if encoding.shape == to_update.shape {
// if an identical encoding exists in the list, we will just
// merge it with the newly created one. We do this after
// calculating the new gains, though, so we aren't changing
// anything mid-stream
maybe_existing_encoding = Some(encoding);
continue;
}
let gain = to_update.compute_gain(&encoding);
if gain > 0 {
log::trace!("adding ({n}, {ii} ({gain})) to queue");
queue.push((gain, n, ii));
}
*opt_encoding = Some(encoding);
}
if let Some(existing) = maybe_existing_encoding.take() {
to_update.deltas.extend(existing.deltas);
}
to_process.push(Some(to_update));
log::trace!("{:?}", DebugTodoList(&to_process));
}
self.encodings = to_process.into_iter().flatten().collect();
// now sort the items in each individual encoding
self.encodings
.iter_mut()
.for_each(|enc| enc.deltas.sort_unstable());
// and then sort the encodings themselves; order doesn't matter,
// but we want to match fonttools output when comparing ttx
self.encodings
.sort_unstable_by(Encoding::ord_matching_fonttools);
log::trace!(
"optimized {} encodings, {}B, ({}B saved)",
self.encodings.len(),
self.cost(),
cost.saturating_sub(self.cost()),
);
}
/// Encode the `Encoding` sets into [`ItemVariationData`] subtables.
///
/// In general, each encoding ends up being one subtable, except:
/// - if the encoding is empty, we get a `NULL` subtable (aka None)
/// - if an encoding contains more than 0xFFFF rows, it is split into
/// multiple subtables.
fn encode(self, key_map: &mut VariationIndexRemapping) -> Vec<Option<ItemVariationData>> {
self.encodings
.into_iter()
.flat_map(Encoding::iter_split_into_table_size_chunks)
.enumerate()
.map(|(i, encoding)| encoding.encode(key_map, i as u16))
.collect()
}
}
impl ColumnBits {
fn for_val(val: i32) -> Self {
if val == 0 {
Self::None
} else if i8::try_from(val).is_ok() {
Self::One
} else if i16::try_from(val).is_ok() {
Self::Two
} else {
Self::Four
}
}
/// The number of bytes required to store this column
fn cost(self) -> usize {
self as u8 as _
}
}
impl RowShape {
/// Reuse this types storage for a new delta set.
///
/// This might be premature optimization.
///
/// The rationale is that many of these are identical, so this saves us
/// from constantly allocating and throwing away.
fn reuse(&mut self, deltas: &DeltaSet, n_regions: u16) {
self.0.clear();
self.0.resize(n_regions as _, ColumnBits::None);
for (region, delta) in &deltas.0 {
self.0[*region as usize] = ColumnBits::for_val(*delta);
}
}
/// Returns a shape that can fit both self and other.
///
/// In practice this means taking the max of each column.
fn merge(&self, other: &Self) -> Self {
Self(
self.0
.iter()
.zip(other.0.iter())
.map(|(us, them)| *us.max(them))
.collect(),
)
}
/// `true` if each value in this shape is >= the same value in `other`.
fn can_cover(&self, other: &Self) -> bool {
debug_assert_eq!(self.0.len(), other.0.len());
self.0
.iter()
.zip(other.0.iter())
.all(|(us, them)| us >= them)
}
/// the cost in bytes of a row in this encoding
fn row_cost(&self) -> usize {
self.0.iter().copied().map(ColumnBits::cost).sum()
}
fn overhead(&self) -> usize {
/// the minimum number of bytes in an ItemVariationData table
const SUBTABLE_FIXED_COST: usize = 10;
const COST_PER_REGION: usize = 2;
SUBTABLE_FIXED_COST + (self.n_non_zero_regions() * COST_PER_REGION)
}
fn n_non_zero_regions(&self) -> usize {
self.0.iter().map(|x| (*x as u8).min(1) as usize).sum()
}
/// return a tuple for the counts of (1, 2, 3) byte-encoded items in self
fn count_lengths(&self) -> (u16, u16, u16) {
self.0
.iter()
.fold((0, 0, 0), |(byte, short, long), this| match this {
ColumnBits::One => (byte + 1, short, long),
ColumnBits::Two => (byte, short + 1, long),
ColumnBits::Four => (byte, short, long + 1),
_ => (byte, short, long),
})
}
/// Returns a struct that maps the canonical regions to the column indicies
/// used in this ItemVariationData.
fn region_map(&self) -> RegionMap {
let mut with_idx = self.0.iter().copied().enumerate().collect::<Vec<_>>();
// sort in descending order of bit size, e.g. big first
with_idx.sort_unstable_by_key(|(idx, bit)| (std::cmp::Reverse(*bit), *idx));
// now build a map of indexes from the original positions to the new ones.
let mut map = vec![(0u16, ColumnBits::None); with_idx.len()];
for (new_idx, (canonical_idx, bits)) in with_idx.iter().enumerate() {
map[*canonical_idx] = (new_idx as _, *bits);
}
let (count_8, count_16, count_32) = self.count_lengths();
let long_words = count_32 > 0;
let n_long_regions = if long_words { count_32 } else { count_16 };
let n_active_regions = count_8 + count_16 + count_32;
RegionMap {
regions_to_columns: map,
n_active_regions,
n_long_regions,
long_words,
}
}
// for verifying our sorting behaviour.
// ported from https://github.com/fonttools/fonttools/blob/ec9986d3b863d/Lib/fontTools/varLib/varStore.py#L441
#[cfg(test)]
fn to_fonttools_repr(&self) -> u128 {
assert!(
self.0.len() <= u128::BITS as usize / 4,
"we can only pack 128 bits"
);
let has_long_word = self.0.iter().any(|bits| *bits == ColumnBits::Four);
let mut chars = 0;
let mut i = 1;
if !has_long_word {
for v in &self.0 {
if *v != ColumnBits::None {
chars += i;
}
if *v == ColumnBits::Two {
chars += i * 0b0010;
}
i <<= 4;
}
} else {
for v in &self.0 {
if *v != ColumnBits::None {
chars += i * 0b0011;
}
if *v == ColumnBits::Four {
chars += i * 0b1100;
}
i <<= 4;
}
}
chars
}
}
impl<'a> Encoding<'a> {
fn cost(&self) -> usize {
self.shape.overhead() + (self.shape.row_cost() * self.deltas.len())
}
fn compute_gain(&self, other: &Encoding) -> i64 {
let current_cost = self.cost() + other.cost();
let combined = self.shape.merge(&other.shape);
let combined_cost =
combined.overhead() + (combined.row_cost() * (self.deltas.len() + other.deltas.len()));
current_cost as i64 - combined_cost as i64
}
fn merge_with(&mut self, other: Encoding<'a>) {
self.shape = self.shape.merge(&other.shape);
self.deltas.extend(other.deltas);
}
/// Split this item into chunks that fit in an ItemVariationData subtable.
///
/// we can only encode up to u16::MAX items in a single subtable, so if we
/// have more items than that we split them off now.
fn iter_split_into_table_size_chunks(self) -> impl Iterator<Item = Encoding<'a>> {
let mut next = Some(self);
std::iter::from_fn(move || {
let mut this = next.take()?;
next = this.split_off_back();
Some(this)
})
}
/// If we contain more than the max allowed items, split the extra items off
///
/// This ensures `self` can be encoded.
fn split_off_back(&mut self) -> Option<Self> {
const MAX_ITEMS: usize = 0xFFFF;
if self.deltas.len() <= MAX_ITEMS {
return None;
}
let deltas = self.deltas.split_off(MAX_ITEMS);
Some(Self {
shape: self.shape.clone(),
deltas,
})
}
fn encode(
self,
key_map: &mut VariationIndexRemapping,
subtable_idx: u16,
) -> Option<ItemVariationData> {
log::trace!(
"encoding subtable {subtable_idx} ({} rows, {}B)",
self.deltas.len(),
self.cost()
);
assert!(self.deltas.len() <= 0xffff, "call split_off_back first");
let item_count = self.deltas.len() as u16;
if item_count == 0 {
//TODO: figure out when a null subtable is useful?
return None;
}
let region_map = self.shape.region_map();
let n_regions = self.shape.n_non_zero_regions();
let total_n_delta_values = self.deltas.len() * n_regions;
let mut raw_deltas = vec![0i32; total_n_delta_values];
// first we generate a vec of i32s, which represents an uncompressed
// 2d array where rows are items and columns are per-region values.
for (i, (delta, raw_key)) in self.deltas.iter().enumerate() {
let pos = i * n_regions;
for (region, val) in &delta.0 {
let Some(column_idx) = region_map.column_index_for_region(*region) else {
continue;
};
let idx = pos + column_idx as usize;
raw_deltas[idx] = *val;
}
let final_key = VariationIndex::new(subtable_idx, i as u16);
key_map.set(*raw_key, final_key);
}
// then we convert the correctly-ordered i32s into the final compressed
// representation.
let delta_sets = region_map.encode_raw_delta_values(raw_deltas);
let word_delta_count = region_map.word_delta_count();
let region_indexes = region_map.indices();
Some(ItemVariationData::new(
item_count,
word_delta_count,
region_indexes,
delta_sets,
))
}
/// match the sorting behaviour that fonttools uses for the final sorting.
///
/// fonttools's behaviour is particular, because they store the 'rowshape' as
/// a packed bitvec with the least significant bits storing the first item,
/// e.g. it's the inverse of our default order. Also we don't want to include
/// our temporary ids.
fn ord_matching_fonttools(&self, other: &Self) -> std::cmp::Ordering {
// first just compare the cost
let cost_ord = self.shape.row_cost().cmp(&other.shape.row_cost());
if cost_ord != std::cmp::Ordering::Equal {
return cost_ord;
}
debug_assert_eq!(
self.shape.0.len(),
other.shape.0.len(),
"all shapes have same # of regions"
);
// if cost is equal, compare each column, in reverse
for (a, b) in self.shape.0.iter().rev().zip(other.shape.0.iter().rev()) {
match a.cmp(b) {
std::cmp::Ordering::Equal => (), // continue
not_eq => return not_eq,
}
}
std::cmp::Ordering::Equal
}
}
impl RegionMap {
/// Takes the delta data as a vec of i32s, writes a vec of BigEndian bytes.
///
/// This is mostly boilerplate around whether we are writing i16 and i8, or
/// i32 and i16.
///
/// Invariant: the raw deltas are sorted based on the region ordering of this
/// RegionMap.
fn encode_raw_delta_values(&self, raw_deltas: Vec<i32>) -> Vec<u8> {
// handles the branching logic of whether long words are 32 or 16 bits.
fn encode_words<'a>(
long: &'a [i32],
short: &'a [i32],
long_words: bool,
) -> impl Iterator<Item = u8> + 'a {
// dumb trick: the two branches have different concrete types,
// so we need to unify them
let left = long_words.then(|| {
long.iter()
.flat_map(|x| x.to_be_bytes().into_iter())
.chain(short.iter().flat_map(|x| (*x as i16).to_be_bytes()))
});
let right = (!long_words).then(|| {
long.iter()
.flat_map(|x| (*x as i16).to_be_bytes().into_iter())
.chain(short.iter().flat_map(|x| (*x as i8).to_be_bytes()))
});
// combine the two branches into a single type
left.into_iter()
.flatten()
.chain(right.into_iter().flatten())
}
if self.n_active_regions == 0 {
return Default::default();
}
raw_deltas
.chunks(self.n_active_regions as usize)
.flat_map(|delta_set| {
let (long, short) = delta_set.split_at(self.n_long_regions as usize);
encode_words(long, short, self.long_words)
})
.collect()
}
/// Compute the 'wordDeltaCount' field
///
/// This is a packed field, with the high bit indicating if we have 2-or-4-bit
/// words, and the low 15 bits indicating the number of 'long' types
fn word_delta_count(&self) -> u16 {
let long_flag = if self.long_words { 0x8000 } else { 0 };
self.n_long_regions | long_flag
}
/// For the provided canonical region index, returns the column index used
/// in this encoding, or None if the region is ignored.
fn column_index_for_region(&self, region: u16) -> Option<u16> {
let (column, bits) = self.regions_to_columns[region as usize];
(bits != ColumnBits::None).then_some(column)
}
/// the indexes into the canonical region list of the active columns
fn indices(&self) -> Vec<u16> {
let mut result: Vec<_> = self
.regions_to_columns
.iter()
.enumerate()
.filter_map(|(i, (_, bits))| (*bits as u8 > 0).then_some(i as _))
.collect();
// we need this result to be sorted based on the local order:
result.sort_unstable_by_key(|region_idx| {
self.regions_to_columns
.get(*region_idx as usize)
.map(|(column, _)| *column)
// this can't fail since we got the indexes from this array
// immediately previously, but this probably generates better
// code than an unwrap
.unwrap_or(u16::MAX)
});
result
}
}
impl VariationIndexRemapping {
fn set(&mut self, from: TemporaryDeltaSetId, to: VariationIndex) {
self.map.insert(from, to);
}
pub fn get(&self, from: TemporaryDeltaSetId) -> Option<VariationIndex> {
self.map.get(&from).cloned()
}
/// convert to tuple for easier comparisons in tests
#[cfg(test)]
fn get_raw(&self, from: TemporaryDeltaSetId) -> Option<(u16, u16)> {
self.map
.get(&from)
.map(|var| (var.delta_set_outer_index, var.delta_set_inner_index))
}
}
impl DeltaSetStorage {
fn add(&mut self, delta_set: DeltaSet) -> TemporaryDeltaSetId {
match self {
DeltaSetStorage::Direct(deltas) => {
let next_id = deltas.len() as u32;
deltas.push(delta_set);
next_id
}
DeltaSetStorage::Deduplicated(deltas) => {
let next_id = deltas.len() as u32;
*deltas.entry(delta_set).or_insert(next_id)
}
}
}
fn iter(&self) -> impl Iterator<Item = (&DeltaSet, TemporaryDeltaSetId)> + '_ {
// a dumb trick so that we are returning a single concrete type regardless
// of which variant this is (which is required when returning impl Trait)
let (a_vec, a_map) = match self {
DeltaSetStorage::Direct(deltas) => (Some(deltas), None),
DeltaSetStorage::Deduplicated(deltas) => (None, Some(deltas)),
};
a_vec
.into_iter()
.flat_map(|x| x.iter().enumerate().map(|(i, val)| (val, i as u32)))
.chain(
a_map
.into_iter()
.flat_map(|map| map.iter().map(|(val, idx)| (val, *idx))),
)
}
}
// a custom impl so that we match the behaviour of fonttools:
//
// - fonttools stores this densely, as just a tuple of deltas in region-order.
// - we store this sparsely, with explicit region indices.
// - this means that we need to handle the case where we are eliding a delta,
// in one deltaset where we have a negative value in the other.
// For example:
// # fonttools rep (1, 5, -10), (1, 5, 0)
// # fontations [(0, 1), (1, 5), (2, -10), (0, 1), (1, 5)]
//
// in this case fonttools will sort the first set before the second, and we would
// do the opposite.
impl PartialOrd for DeltaSet {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for DeltaSet {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
let max_region_idx = self
.0
.iter()
.chain(other.0.iter())
.map(|(idx, _)| *idx)
.max()
.unwrap_or(0);
let left = DenseDeltaIter::new(&self.0, max_region_idx);
let right = DenseDeltaIter::new(&other.0, max_region_idx);
for (l, r) in left.zip(right) {
match l.cmp(&r) {
std::cmp::Ordering::Equal => (),
non_eq => return non_eq,
}
}
std::cmp::Ordering::Equal
}
}
// a helper that iterates our sparse deltas, inserting explicit 0s for any missing
// regions.
//
// // this is only used in our partial ord impl
struct DenseDeltaIter<'a> {
total_len: u16,
cur_pos: u16,
deltas: &'a [(u16, i32)],
}
impl<'a> DenseDeltaIter<'a> {
fn new(deltas: &'a [(u16, i32)], max_idx: u16) -> Self {
DenseDeltaIter {
total_len: max_idx,
deltas,
cur_pos: 0,
}
}
}
impl<'a> Iterator for DenseDeltaIter<'a> {
type Item = i32;
fn next(&mut self) -> Option<Self::Item> {
if self.cur_pos > self.total_len {
return None;
}
let result = if self.deltas.first().map(|(idx, _)| *idx) == Some(self.cur_pos) {
let result = self.deltas.first().unwrap().1;
self.deltas = &self.deltas[1..];
result
} else {
0
};
self.cur_pos += 1;
Some(result)
}
}
impl Default for DeltaSetStorage {
fn default() -> Self {
Self::Deduplicated(Default::default())
}
}
impl Display for RowShape {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for col in &self.0 {
match col {
ColumnBits::None => write!(f, "-"),
ColumnBits::One => write!(f, "B"),
ColumnBits::Two => write!(f, "S"),
ColumnBits::Four => write!(f, "L"),
}?
}
Ok(())
}
}
impl Debug for Encoding<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Encoding({}, {} items {} bytes)",
self.shape,
self.deltas.len(),
self.cost()
)
}
}
impl Debug for Encoder<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Encoder")
.field("encodings", &self.encodings)
.finish_non_exhaustive()
}
}
#[cfg(test)]
mod tests {
use crate::tables::variations::RegionAxisCoordinates;
use font_types::F2Dot14;
use read_fonts::{FontData, FontRead};
use super::*;
fn reg_coords(min: f32, default: f32, max: f32) -> RegionAxisCoordinates {
RegionAxisCoordinates {
start_coord: F2Dot14::from_f32(min),
peak_coord: F2Dot14::from_f32(default),
end_coord: F2Dot14::from_f32(max),
}
}
fn test_regions() -> [VariationRegion; 3] {
[
VariationRegion::new(vec![reg_coords(0.0, 0.2, 1.0), reg_coords(0.0, 0.0, 1.0)]),
VariationRegion::new(vec![reg_coords(0.0, 0.1, 0.3), reg_coords(0.0, 0.1, 0.3)]),
VariationRegion::new(vec![reg_coords(0.0, 0.1, 0.5), reg_coords(0.0, 0.1, 0.3)]),
]
}
#[test]
#[allow(clippy::redundant_clone)]
fn smoke_test() {
let [r1, r2, r3] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
builder.add_deltas(vec![(r1.clone(), 512), (r2, 266), (r3.clone(), 1115)]);
builder.add_deltas(vec![(r3.clone(), 20)]);
builder.add_deltas(vec![(r3.clone(), 21)]);
builder.add_deltas(vec![(r3, 22)]);
// we should have three regions, and two subtables
let (store, _) = builder.build();
assert_eq!(store.variation_region_list.variation_regions.len(), 3);
assert_eq!(store.item_variation_data.len(), 2);
assert_eq!(
store.item_variation_data[0]
.as_ref()
.unwrap()
.region_indexes,
vec![2]
);
assert_eq!(
store.item_variation_data[1]
.as_ref()
.unwrap()
.region_indexes,
vec![0, 1, 2]
);
}
#[test]
fn key_mapping() {
let [r1, r2, r3] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
let k1 = builder.add_deltas(vec![(r1.clone(), 5), (r2, 1000), (r3.clone(), 1500)]);
let k2 = builder.add_deltas(vec![(r1.clone(), -3), (r3.clone(), 20)]);
let k3 = builder.add_deltas(vec![(r1.clone(), -12), (r3.clone(), 7)]);
// add enough items so that the optimizer doesn't merge these two encodings
let _ = builder.add_deltas(vec![(r1.clone(), -10), (r3.clone(), 7)]);
let _ = builder.add_deltas(vec![(r1.clone(), -9), (r3.clone(), 7)]);
let _ = builder.add_deltas(vec![(r1, -11), (r3, 7)]);
// let encoder = builder.encoder();
// eprintln!("{encoder:?}");
// we should have three regions, and two subtables
let (_, key_lookup) = builder.build();
// first subtable has only one item
// first item gets mapped into second subtable, because of how we sort
assert_eq!(key_lookup.get_raw(k1).unwrap(), (1, 0),);
// next two items are in the same (first) subtable
// inner indexes are based on sort order within the subtable:
assert_eq!(key_lookup.get_raw(k2).unwrap(), (0, 4),); // largest r1 value
assert_eq!(key_lookup.get_raw(k3).unwrap(), (0, 0),); // smallest r1 value
assert_eq!(key_lookup.map.len(), 6);
}
// really just here to check my own understanding of what's going on
#[test]
fn fontools_rowshape_repr() {
use ColumnBits as C;
let shape1 = RowShape(vec![C::None, C::One, C::One, C::Two]);
assert_eq!(shape1.to_fonttools_repr(), 0b0011_0001_0001_0000);
let shape2 = RowShape(vec![C::Two, C::One, C::One, C::None]);
assert_eq!(shape2.to_fonttools_repr(), 0b0000_0001_0001_0011);
assert!(shape1.to_fonttools_repr() > shape2.to_fonttools_repr());
}
#[test]
fn encoding_sort_order() {
let _ = env_logger::builder().is_test(true).try_init();
let [r1, r2, r3] = test_regions();
// make two encodings that have the same total cost, but different shape
let mut builder = VariationStoreBuilder::new(2);
// shape (2, 1, 0)
builder.add_deltas(vec![(r1.clone(), 1000), (r2.clone(), 5)]);
builder.add_deltas(vec![(r1.clone(), 1013), (r2.clone(), 20)]);
builder.add_deltas(vec![(r1.clone(), 1014), (r2.clone(), 21)]);
// shape (0, 2, 1)
builder.add_deltas(vec![(r2.clone(), 1212), (r3.clone(), 7)]);
builder.add_deltas(vec![(r2.clone(), 1213), (r3.clone(), 8)]);
builder.add_deltas(vec![(r2.clone(), 1214), (r3.clone(), 8)]);
//shape (1, 0, 1)
builder.add_deltas(vec![(r1.clone(), 12), (r3.clone(), 7)]);
builder.add_deltas(vec![(r1.clone(), 13), (r3.clone(), 9)]);
builder.add_deltas(vec![(r1.clone(), 14), (r3.clone(), 10)]);
builder.add_deltas(vec![(r1.clone(), 15), (r3.clone(), 11)]);
builder.add_deltas(vec![(r1.clone(), 16), (r3.clone(), 12)]);
let (var_store, key_lookup) = builder.build();
assert_eq!(var_store.item_variation_data.len(), 3);
assert_eq!(key_lookup.map.len(), 11);
// encoding (1, 0, 1) will be sorted first, since it has the lowest cost
assert_eq!(
var_store.item_variation_data[0]
.as_ref()
.unwrap()
.region_indexes,
vec![0, 2]
);
// then encoding with shape (2, 1, 0) since the costs are equal and we
// compare backwards, to match fonttools
assert_eq!(
var_store.item_variation_data[1]
.as_ref()
.unwrap()
.region_indexes,
vec![0, 1]
);
}
#[test]
#[allow(clippy::redundant_clone)]
fn to_binary() {
let [r1, r2, r3] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
builder.add_deltas(vec![(r1.clone(), 512), (r2, 1000), (r3.clone(), 265)]);
builder.add_deltas(vec![(r1.clone(), -3), (r3.clone(), 20)]);
builder.add_deltas(vec![(r1.clone(), -12), (r3.clone(), 7)]);
builder.add_deltas(vec![(r1.clone(), -11), (r3.clone(), 8)]);
builder.add_deltas(vec![(r1.clone(), -10), (r3.clone(), 9)]);
let (table, _) = builder.build();
let bytes = crate::dump_table(&table).unwrap();
let data = FontData::new(&bytes);
let reloaded = read_fonts::tables::variations::ItemVariationStore::read(data).unwrap();
assert_eq!(reloaded.item_variation_data_count(), 2);
let var_data_array = reloaded.item_variation_data();
let var_data = var_data_array.get(0).unwrap().unwrap();
assert_eq!(var_data.region_indexes(), &[0, 2]);
assert_eq!(var_data.item_count(), 4);
assert_eq!(var_data.delta_set(0).collect::<Vec<_>>(), vec![-12, 7]);
assert_eq!(var_data.delta_set(1).collect::<Vec<_>>(), vec![-11, 8]);
assert_eq!(var_data.delta_set(2).collect::<Vec<_>>(), vec![-10, 9]);
assert_eq!(var_data.delta_set(3).collect::<Vec<_>>(), vec![-3, 20]);
let var_data = var_data_array.get(1).unwrap().unwrap();
assert_eq!(var_data.region_indexes(), &[0, 1, 2]);
assert_eq!(var_data.item_count(), 1);
assert_eq!(
var_data.delta_set(0).collect::<Vec<_>>(),
vec![512, 1000, 265]
);
}
#[test]
fn reuse_identical_variation_data() {
let _ = env_logger::builder().is_test(true).try_init();
let [r1, r2, r3] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
let k1 = builder.add_deltas(vec![(r1.clone(), 5), (r2, 10), (r3.clone(), 15)]);
let k2 = builder.add_deltas(vec![(r1.clone(), -12), (r3.clone(), 7)]);
let k3 = builder.add_deltas(vec![(r1.clone(), -12), (r3.clone(), 7)]);
let k4 = builder.add_deltas(vec![(r1, 322), (r3, 532)]);
// we should have three regions, and two subtables
let (_, key_lookup) = builder.build();
assert_eq!(k2, k3);
assert_ne!(k1, k2);
assert_ne!(k1, k4);
assert_eq!(key_lookup.map.len(), 3);
}
/// if we have a single region set, where some deltas are 32-bit, the
/// smaller deltas should get their own subtable IFF we save enough bytes
/// to justify this
#[test]
#[allow(clippy::redundant_clone)]
fn long_deltas_split() {
let [r1, r2, _] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
// short
builder.add_deltas(vec![(r1.clone(), 1), (r2.clone(), 2)]);
builder.add_deltas(vec![(r1.clone(), 3), (r2.clone(), 4)]);
builder.add_deltas(vec![(r1.clone(), 5), (r2.clone(), 6)]);
// long
builder.add_deltas(vec![(r1.clone(), 0xffff + 1), (r2.clone(), 0xffff + 2)]);
let mut encoder = builder.encoder();
assert_eq!(encoder.encodings.len(), 2);
encoder.optimize();
assert_eq!(encoder.encodings.len(), 2);
}
/// combine smaller deltas into larger when there aren't many of them
#[test]
#[allow(clippy::redundant_clone)]
fn long_deltas_combine() {
let [r1, r2, _] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
// short
builder.add_deltas(vec![(r1.clone(), 1), (r2.clone(), 2)]);
builder.add_deltas(vec![(r1.clone(), 3), (r2.clone(), 4)]);
// long
builder.add_deltas(vec![(r1.clone(), 0xffff + 1), (r2.clone(), 0xffff + 2)]);
let mut encoder = builder.encoder();
assert_eq!(encoder.encodings.len(), 2);
assert_eq!(encoder.encodings[0].shape.overhead(), 14); // 10 base, 2 * 2 columns
assert_eq!(encoder.encodings[0].cost(), 14 + 4); // overhead + 2 * 2 bytes/row
assert_eq!(encoder.encodings[1].shape.overhead(), 14);
assert_eq!(encoder.encodings[1].cost(), 14 + 8); // overhead + 1 * 8 bytes/rows
encoder.optimize();
assert_eq!(encoder.encodings.len(), 1);
}
// ensure that we are merging as expected
#[test]
#[allow(clippy::redundant_clone)]
fn combine_many_shapes() {
let _ = env_logger::builder().is_test(true).try_init();
let [r1, r2, r3] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
// orchestrate a failure case:
// - we want to combine
builder.add_deltas(vec![(r1.clone(), 0xffff + 5)]); // (L--)
builder.add_deltas(vec![(r1.clone(), 2)]); // (B--)
builder.add_deltas(vec![(r1.clone(), 300)]); // (S--)
builder.add_deltas(vec![(r2.clone(), 0xffff + 5)]); // (-L-)
builder.add_deltas(vec![(r2.clone(), 2)]); // (-B-)
builder.add_deltas(vec![(r2.clone(), 300)]); // (-S-)
builder.add_deltas(vec![(r3.clone(), 0xffff + 5)]); // (--L)
builder.add_deltas(vec![(r3.clone(), 2)]); // (--B)
builder.add_deltas(vec![(r3.clone(), 300)]); // (--S)
let mut encoder = builder.encoder();
encoder.optimize();
// we compile down to three subtables, each with one column
assert_eq!(encoder.encodings.len(), 3);
assert!(encoder.encodings[0]
.compute_gain(&encoder.encodings[1])
.is_negative());
}
#[test]
#[allow(clippy::redundant_clone)]
fn combine_two_big_fellas() {
let _ = env_logger::builder().is_test(true).try_init();
let [r1, r2, r3] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
// we only combine two of these, since that saves 2 bytes, but adding
// the third is too expensive
builder.add_deltas(vec![(r1.clone(), 0xffff + 5)]); // (L--)
builder.add_deltas(vec![(r2.clone(), 0xffff + 5)]); // (-L-)
builder.add_deltas(vec![(r3.clone(), 0xffff + 5)]); // (--L)
let mut encoder = builder.encoder();
assert_eq!(encoder.encodings[0].cost(), 16);
let merge_cost = 2 // extra column
+ 4 // existing encoding gets extra column
+ 8; // two columns for new row
assert_eq!(
encoder.encodings[0].compute_gain(&encoder.encodings[1]),
16 - merge_cost
);
encoder.optimize();
// we didn't merge any further because it's too expensive
let next_merge_cost = 2
+ 2 * 4 // two existing rows get extra column
+ 12; // three columns for new row
assert_eq!(encoder.encodings.len(), 2);
assert_eq!(encoder.encodings[0].cost(), 16);
assert_eq!(
encoder.encodings[0].compute_gain(&encoder.encodings[1]),
16 - next_merge_cost
);
}
/// we had a crash here where we were trying to write zeros when they should
/// be getting ignored.
#[test]
fn ensure_zero_deltas_dont_write() {
let _ = env_logger::builder().is_test(true).try_init();
let [r1, r2, _] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
builder.add_deltas(vec![(r1.clone(), 0), (r2.clone(), 4)]);
let _ = builder.build();
}
// we had another crash here where when *all* deltas were zero we would
// call 'slice.chunks()' with '0', which is not allowed
#[test]
fn ensure_all_zeros_dont_write() {
let _ = env_logger::builder().is_test(true).try_init();
let [r1, r2, _] = test_regions();
let mut builder = VariationStoreBuilder::new(2);
builder.add_deltas(vec![(r1.clone(), 0), (r2.clone(), 0)]);
let _ = builder.build();
}
#[test]
fn vardata_region_indices_order() {
let r0 = VariationRegion::new(vec![reg_coords(0.0, 0.5, 1.0)]);
let r1 = VariationRegion::new(vec![reg_coords(0.5, 1.0, 1.0)]);
let mut builder = VariationStoreBuilder::new(1);
builder.add_deltas(vec![(r0.clone(), 1), (r1.clone(), 2)]);
// 256 won't fit in a u8 thus we expect the deltas for the column corresponding
// to r1 will be packed as u16
builder.add_deltas(vec![(r0.clone(), 3), (r1.clone(), 256)]);
let (store, _varidx_map) = builder.build();
assert_eq!(store.variation_region_list.variation_regions.len(), 2);
assert_eq!(store.item_variation_data.len(), 1);
let var_data = store.item_variation_data[0].as_ref().unwrap();
assert_eq!(var_data.item_count, 2);
assert_eq!(var_data.word_delta_count, 1);
// this should be [1, 0] and not [0, 1] because the regions with wider
// deltas should be packed first.
// var_data.region_indexes is an array of indices into the variation region list
// in the order of the columns of the variation data. So it maps from column index
// to region index, not the other way around.
assert_eq!(var_data.region_indexes, vec![1, 0]);
assert_eq!(
var_data.delta_sets,
// ItemVariationData packs deltas as two-dimensional [u8] array
// with item_count rows and region_index_count columns.
// In this particular case (word_count=1) the first column contains 'words'
// with 2-byte deltas, followed by the second column with 1-byte deltas.
vec![
// item[0]
0, 2, // 2: delta for r1
1, // 1: delta for r0
// item[1]
1, 0, // 256: delta for r1
3, // 3: delta for r0
],
);
}
#[test]
fn unoptimized_version() {
let r0 = VariationRegion::new(vec![reg_coords(0.0, 0.5, 1.0)]);
let r1 = VariationRegion::new(vec![reg_coords(0.5, 1.0, 1.0)]);
let mut builder = VariationStoreBuilder::new_with_implicit_indices(1);
builder.add_deltas(vec![(r0.clone(), 1), (r1.clone(), 2)]);
// 256 won't fit in a u8 thus we expect the deltas for the column corresponding
// to r1 will be packed as u16
builder.add_deltas(vec![(r0.clone(), 1), (r1.clone(), 2)]);
builder.add_deltas(vec![(r0.clone(), 3), (r1.clone(), 256)]);
builder.add_deltas(vec![(r0.clone(), 3), (r1.clone(), 256)]);
let (ivs, key_map) = builder.build();
// we should get an ivs with one subtable, containing four deltas
assert_eq!(ivs.item_variation_data.len(), 1);
let var_data = ivs.item_variation_data[0].as_ref().unwrap();
assert_eq!(var_data.item_count, 4);
assert_eq!(var_data.region_indexes, vec![1, 0]);
assert_eq!(
var_data.delta_sets,
&[
0x0, 0x2, // item 1, region 2
0x1, // item 1, region 1
0x0, 0x2, // item 2, region 2
0x1, // item 2, region 1
0x1, 0x0, // item 3, region 2
0x3, // item 3, region 1
0x1, 0x0, // item 4, region 2
0x3, // item 4, region 1
]
);
// assert that keymap entries are identity mapping
assert_eq!(key_map.map.len(), 4);
assert!(key_map
.map
.iter()
.all(|(key, idx)| *key == idx.delta_set_inner_index as u32))
}
#[test]
fn delta_set_ordering() {
let left = DeltaSet(vec![(0, 1), (1, 2), (2, -11)]);
let right = DeltaSet(vec![(0, 1), (1, 2)]);
// although the vec ord impl thinks that the left is 'bigger'
// (it having more items):
assert!(left.0 > right.0);
// our custom impl treats it as smaller, matching fonttools
assert!(left < right);
// but this is only the case because the delta is negative
let left = DeltaSet(vec![(0, 1), (1, 2), (2, 11)]);
let right = DeltaSet(vec![(0, 1), (1, 2)]);
assert!(left > right);
let left = DeltaSet(vec![(0, 1), (1, 2), (2, -11)]);
let right = DeltaSet(vec![(0, 1), (1, 2), (3, 0)]);
assert!(left < right);
// also true in the middle
let left = DeltaSet(vec![(0, 1), (1, -2), (2, -11)]);
let right = DeltaSet(vec![(0, 1), (2, -11)]);
assert!(left < right)
}
#[test]
fn no_duplicate_zero_delta_sets() {
let r0 = VariationRegion::new(vec![reg_coords(0.0, 5.0, 1.0)]);
let r1 = VariationRegion::new(vec![reg_coords(0.5, 1.0, 1.0)]);
let mut builder = VariationStoreBuilder::new(1);
let varidxes = vec![
// first glyph has no variations (e.g. .notdef only defined at default location)
// but we still need to add it to the variation store to reserve an index so
// we add an empty delta set
builder.add_deltas::<i32>(Vec::new()),
builder.add_deltas(vec![(r0.clone(), 50), (r1.clone(), 100)]),
// this glyph has explicit masters that are *all* the same as the default (delta is 0);
// we expect the builder to reuse the same no-op delta set as the first glyph
builder.add_deltas(vec![(r0.clone(), 0), (r1.clone(), 0)]),
// this glyph repeats the same delta set as the second glyph, thus we expect
// the builder to map it to the same delta set index
builder.add_deltas(vec![(r0.clone(), 50), (r1.clone(), 100)]),
// this glyph happens to have one master that's the same as the default (delta is 0);
// nothing special here, we expect a new delta set to be created
builder.add_deltas(vec![(r0.clone(), 0), (r1.clone(), 100)]),
];
let (store, key_map) = builder.build();
let varidx_map: Vec<u32> = varidxes
.into_iter()
.map(|idx| key_map.get(idx).unwrap().into())
.collect::<Vec<_>>();
assert_eq!(store.variation_region_list.variation_regions.len(), 2);
assert_eq!(store.item_variation_data.len(), 1);
let var_data = store.item_variation_data[0].as_ref().unwrap();
assert_eq!(var_data.item_count, 3);
assert_eq!(var_data.word_delta_count, 0);
assert_eq!(var_data.region_indexes, vec![0, 1]);
assert_eq!(var_data.delta_sets, vec![0, 0, 0, 100, 50, 100],);
// glyph 0 and 2 should map to the same no-op [0, 0] deltaset, while
// glyph 1 and 3 should map to deltaset [50, 100];
// glyph 4 should map to deltaset [0, 100]
assert_eq!(varidx_map, vec![0, 2, 0, 2, 1]);
}
#[test]
fn prune_unused_regions() {
// https://github.com/googlefonts/fontations/issues/733
let r0 = VariationRegion::new(vec![reg_coords(-1.0, -0.5, 0.0)]);
let r1 = VariationRegion::new(vec![reg_coords(-1.0, -1.0, 0.0)]);
let r2 = VariationRegion::new(vec![reg_coords(0.0, 0.5, 1.0)]);
let r3 = VariationRegion::new(vec![reg_coords(0.0, 1.0, 1.0)]);
let mut builder = VariationStoreBuilder::new(1);
builder.add_deltas(vec![
(r0.clone(), 0),
(r1.clone(), 50),
(r2.clone(), 0),
(r3.clone(), 100),
]);
let (store, _) = builder.build();
// not 4 regions, since only 2 are actually used
assert_eq!(store.variation_region_list.variation_regions.len(), 2);
assert_eq!(store.item_variation_data.len(), 1);
let var_data = store.item_variation_data[0].as_ref().unwrap();
assert_eq!(var_data.item_count, 1);
assert_eq!(var_data.word_delta_count, 0);
assert_eq!(var_data.region_indexes, vec![0, 1]); // not 1, 3
assert_eq!(var_data.delta_sets, vec![50, 100]);
}
}