Struct wplot::BinaryHeap
1.0.0 · source · [−]pub struct BinaryHeap<T> { /* private fields */ }Expand description
A priority queue implemented with a binary heap.
This will be a max-heap.
It is a logic error for an item to be modified in such a way that the
item’s ordering relative to any other item, as determined by the Ord
trait, changes while it is in the heap. This is normally only possible
through Cell, RefCell, global state, I/O, or unsafe code. The
behavior resulting from such a logic error is not specified, but will
be encapsulated to the BinaryHeap that observed the logic error and not
result in undefined behavior. This could include panics, incorrect results,
aborts, memory leaks, and non-termination.
Examples
use std::collections::BinaryHeap;
// Type inference lets us omit an explicit type signature (which
// would be `BinaryHeap<i32>` in this example).
let mut heap = BinaryHeap::new();
// We can use peek to look at the next item in the heap. In this case,
// there's no items in there yet so we get None.
assert_eq!(heap.peek(), None);
// Let's add some scores...
heap.push(1);
heap.push(5);
heap.push(2);
// Now peek shows the most important item in the heap.
assert_eq!(heap.peek(), Some(&5));
// We can check the length of a heap.
assert_eq!(heap.len(), 3);
// We can iterate over the items in the heap, although they are returned in
// a random order.
for x in &heap {
println!("{x}");
}
// If we instead pop these scores, they should come back in order.
assert_eq!(heap.pop(), Some(5));
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
// We can clear the heap of any remaining items.
heap.clear();
// The heap should now be empty.
assert!(heap.is_empty())A BinaryHeap with a known list of items can be initialized from an array:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 5, 2]);Min-heap
Either core::cmp::Reverse or a custom Ord implementation can be used to
make BinaryHeap a min-heap. This makes heap.pop() return the smallest
value instead of the greatest one.
use std::collections::BinaryHeap;
use std::cmp::Reverse;
let mut heap = BinaryHeap::new();
// Wrap values in `Reverse`
heap.push(Reverse(1));
heap.push(Reverse(5));
heap.push(Reverse(2));
// If we pop these scores now, they should come back in the reverse order.
assert_eq!(heap.pop(), Some(Reverse(1)));
assert_eq!(heap.pop(), Some(Reverse(2)));
assert_eq!(heap.pop(), Some(Reverse(5)));
assert_eq!(heap.pop(), None);Time complexity
The value for push is an expected cost; the method documentation gives a
more detailed analysis.
Implementations
sourceimpl<T> BinaryHeap<T> where
T: Ord,
impl<T> BinaryHeap<T> where
T: Ord,
sourcepub fn new() -> BinaryHeap<T>
pub fn new() -> BinaryHeap<T>
Creates an empty BinaryHeap as a max-heap.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.push(4);sourcepub fn with_capacity(capacity: usize) -> BinaryHeap<T>
pub fn with_capacity(capacity: usize) -> BinaryHeap<T>
Creates an empty BinaryHeap with at least the specified capacity.
The binary heap will be able to hold at least capacity elements without
reallocating. This method is allowed to allocate for more elements than
capacity. If capacity is 0, the binary heap will not allocate.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::with_capacity(10);
heap.push(4);1.12.0 · sourcepub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>>
pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>>
Returns a mutable reference to the greatest item in the binary heap, or
None if it is empty.
Note: If the PeekMut value is leaked, the heap may be in an
inconsistent state.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
assert!(heap.peek_mut().is_none());
heap.push(1);
heap.push(5);
heap.push(2);
{
let mut val = heap.peek_mut().unwrap();
*val = 0;
}
assert_eq!(heap.peek(), Some(&2));Time complexity
If the item is modified then the worst case time complexity is O(log(n)), otherwise it’s O(1).
sourcepub fn pop(&mut self) -> Option<T>
pub fn pop(&mut self) -> Option<T>
Removes the greatest item from the binary heap and returns it, or None if it
is empty.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 3]);
assert_eq!(heap.pop(), Some(3));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);Time complexity
The worst case cost of pop on a heap containing n elements is O(log(n)).
sourcepub fn push(&mut self, item: T)
pub fn push(&mut self, item: T)
Pushes an item onto the binary heap.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.push(3);
heap.push(5);
heap.push(1);
assert_eq!(heap.len(), 3);
assert_eq!(heap.peek(), Some(&5));Time complexity
The expected cost of push, averaged over every possible ordering of
the elements being pushed, and over a sufficiently large number of
pushes, is O(1). This is the most meaningful cost metric when pushing
elements that are not already in any sorted pattern.
The time complexity degrades if elements are pushed in predominantly ascending order. In the worst case, elements are pushed in ascending sorted order and the amortized cost per push is O(log(n)) against a heap containing n elements.
The worst case cost of a single call to push is O(n). The worst case
occurs when capacity is exhausted and needs a resize. The resize cost
has been amortized in the previous figures.
1.5.0 · sourcepub fn into_sorted_vec(self) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
pub fn into_sorted_vec(self) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Consumes the BinaryHeap and returns a vector in sorted
(ascending) order.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
heap.push(6);
heap.push(3);
let vec = heap.into_sorted_vec();
assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);1.11.0 · sourcepub fn append(&mut self, other: &mut BinaryHeap<T>)
pub fn append(&mut self, other: &mut BinaryHeap<T>)
Moves all the elements of other into self, leaving other empty.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
let mut b = BinaryHeap::from([-20, 5, 43]);
a.append(&mut b);
assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
assert!(b.is_empty());sourcepub fn drain_sorted(&mut self) -> DrainSorted<'_, T>
🔬 This is a nightly-only experimental API. (binary_heap_drain_sorted)
pub fn drain_sorted(&mut self) -> DrainSorted<'_, T>
binary_heap_drain_sorted)Clears the binary heap, returning an iterator over the removed elements in heap order. If the iterator is dropped before being fully consumed, it drops the remaining elements in heap order.
The returned iterator keeps a mutable borrow on the heap to optimize its implementation.
Note:
.drain_sorted()is O(n * log(n)); much slower than.drain(). You should use the latter for most cases.
Examples
Basic usage:
#![feature(binary_heap_drain_sorted)]
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
assert_eq!(heap.len(), 5);
drop(heap.drain_sorted()); // removes all elements in heap order
assert_eq!(heap.len(), 0);sourcepub fn retain<F>(&mut self, f: F) where
F: for<'_> FnMut(&T) -> bool,
🔬 This is a nightly-only experimental API. (binary_heap_retain)
pub fn retain<F>(&mut self, f: F) where
F: for<'_> FnMut(&T) -> bool,
binary_heap_retain)Retains only the elements specified by the predicate.
In other words, remove all elements e for which f(&e) returns
false. The elements are visited in unsorted (and unspecified) order.
Examples
Basic usage:
#![feature(binary_heap_retain)]
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
heap.retain(|x| x % 2 == 0); // only keep even numbers
assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])sourceimpl<T> BinaryHeap<T>
impl<T> BinaryHeap<T>
sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
Returns an iterator visiting all values in the underlying vector, in arbitrary order.
Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order
for x in heap.iter() {
println!("{x}");
}sourcepub fn into_iter_sorted(self) -> IntoIterSorted<T>
🔬 This is a nightly-only experimental API. (binary_heap_into_iter_sorted)
pub fn into_iter_sorted(self) -> IntoIterSorted<T>
binary_heap_into_iter_sorted)Returns an iterator which retrieves elements in heap order. This method consumes the original heap.
Examples
Basic usage:
#![feature(binary_heap_into_iter_sorted)]
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);sourcepub fn peek(&self) -> Option<&T>
pub fn peek(&self) -> Option<&T>
Returns the greatest item in the binary heap, or None if it is empty.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
assert_eq!(heap.peek(), None);
heap.push(1);
heap.push(5);
heap.push(2);
assert_eq!(heap.peek(), Some(&5));
Time complexity
Cost is O(1) in the worst case.
sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the binary heap can hold without reallocating.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.push(4);sourcepub fn reserve_exact(&mut self, additional: usize)
pub fn reserve_exact(&mut self, additional: usize)
Reserves the minimum capacity for at least additional elements more than
the current length. Unlike reserve, this will not
deliberately over-allocate to speculatively avoid frequent allocations.
After calling reserve_exact, capacity will be greater than or equal to
self.len() + additional. Does nothing if the capacity is already
sufficient.
Panics
Panics if the new capacity overflows usize.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.reserve_exact(100);
assert!(heap.capacity() >= 100);
heap.push(4);sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional elements more than the
current length. The allocator may reserve more space to speculatively
avoid frequent allocations. After calling reserve,
capacity will be greater than or equal to self.len() + additional.
Does nothing if capacity is already sufficient.
Panics
Panics if the new capacity overflows usize.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.reserve(100);
assert!(heap.capacity() >= 100);
heap.push(4);1.63.0 · sourcepub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
Tries to reserve the minimum capacity for at least additional elements
more than the current length. Unlike try_reserve, this will not
deliberately over-allocate to speculatively avoid frequent allocations.
After calling try_reserve_exact, capacity will be greater than or
equal to self.len() + additional if it returns Ok(()).
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer try_reserve if future insertions are expected.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::BinaryHeap;
use std::collections::TryReserveError;
fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
let mut heap = BinaryHeap::new();
// Pre-reserve the memory, exiting if we can't
heap.try_reserve_exact(data.len())?;
// Now we know this can't OOM in the middle of our complex work
heap.extend(data.iter());
Ok(heap.pop())
}1.63.0 · sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional elements more than the
current length. The allocator may reserve more space to speculatively
avoid frequent allocations. After calling try_reserve, capacity will be
greater than or equal to self.len() + additional if it returns
Ok(()). Does nothing if capacity is already sufficient.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::BinaryHeap;
use std::collections::TryReserveError;
fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
let mut heap = BinaryHeap::new();
// Pre-reserve the memory, exiting if we can't
heap.try_reserve(data.len())?;
// Now we know this can't OOM in the middle of our complex work
heap.extend(data.iter());
Ok(heap.pop())
}sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Discards as much additional capacity as possible.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.shrink_to_fit();
assert!(heap.capacity() == 0);1.56.0 · sourcepub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Discards capacity with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
If the current capacity is less than the lower limit, this is a no-op.
Examples
use std::collections::BinaryHeap;
let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.shrink_to(10);
assert!(heap.capacity() >= 10);sourcepub fn as_slice(&self) -> &[T]ⓘNotable traits for &[u8]impl<'_> Read for &[u8]impl<'_> Write for &mut [u8]
🔬 This is a nightly-only experimental API. (binary_heap_as_slice)
pub fn as_slice(&self) -> &[T]ⓘNotable traits for &[u8]impl<'_> Read for &[u8]impl<'_> Write for &mut [u8]
binary_heap_as_slice)Returns a slice of all values in the underlying vector, in arbitrary order.
Examples
Basic usage:
#![feature(binary_heap_as_slice)]
use std::collections::BinaryHeap;
use std::io::{self, Write};
let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
io::sink().write(heap.as_slice()).unwrap();1.5.0 · sourcepub fn into_vec(self) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
pub fn into_vec(self) -> Vec<T, Global>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Consumes the BinaryHeap and returns the underlying vector
in arbitrary order.
Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
let vec = heap.into_vec();
// Will print in some order
for x in vec {
println!("{x}");
}sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of the binary heap.
Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 3]);
assert_eq!(heap.len(), 2);sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Checks if the binary heap is empty.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
assert!(heap.is_empty());
heap.push(3);
heap.push(5);
heap.push(1);
assert!(!heap.is_empty());1.6.0 · sourcepub fn drain(&mut self) -> Drain<'_, T>
pub fn drain(&mut self) -> Drain<'_, T>
Clears the binary heap, returning an iterator over the removed elements in arbitrary order. If the iterator is dropped before being fully consumed, it drops the remaining elements in arbitrary order.
The returned iterator keeps a mutable borrow on the heap to optimize its implementation.
Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 3]);
assert!(!heap.is_empty());
for x in heap.drain() {
println!("{x}");
}
assert!(heap.is_empty());Trait Implementations
sourceimpl<T> Clone for BinaryHeap<T> where
T: Clone,
impl<T> Clone for BinaryHeap<T> where
T: Clone,
sourcefn clone(&self) -> BinaryHeap<T>
fn clone(&self) -> BinaryHeap<T>
Returns a copy of the value. Read more
sourcefn clone_from(&mut self, source: &BinaryHeap<T>)
fn clone_from(&mut self, source: &BinaryHeap<T>)
Performs copy-assignment from source. Read more
1.4.0 · sourceimpl<T> Debug for BinaryHeap<T> where
T: Debug,
impl<T> Debug for BinaryHeap<T> where
T: Debug,
sourceimpl<T> Default for BinaryHeap<T> where
T: Ord,
impl<T> Default for BinaryHeap<T> where
T: Ord,
sourcefn default() -> BinaryHeap<T>
fn default() -> BinaryHeap<T>
Creates an empty BinaryHeap<T>.
1.2.0 · sourceimpl<'a, T> Extend<&'a T> for BinaryHeap<T> where
T: 'a + Ord + Copy,
impl<'a, T> Extend<&'a T> for BinaryHeap<T> where
T: 'a + Ord + Copy,
sourcefn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>,
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>,
Extends a collection with the contents of an iterator. Read more
sourcefn extend_one(&mut self, &'a T)
fn extend_one(&mut self, &'a T)
extend_one)Extends a collection with exactly one element.
sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)Reserves capacity in a collection for the given number of additional elements. Read more
sourceimpl<T> Extend<T> for BinaryHeap<T> where
T: Ord,
impl<T> Extend<T> for BinaryHeap<T> where
T: Ord,
sourcefn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>,
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>,
Extends a collection with the contents of an iterator. Read more
sourcefn extend_one(&mut self, item: T)
fn extend_one(&mut self, item: T)
extend_one)Extends a collection with exactly one element.
sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)Reserves capacity in a collection for the given number of additional elements. Read more
1.56.0 · sourceimpl<T, const N: usize> From<[T; N]> for BinaryHeap<T> where
T: Ord,
impl<T, const N: usize> From<[T; N]> for BinaryHeap<T> where
T: Ord,
sourcefn from(arr: [T; N]) -> BinaryHeap<T>
fn from(arr: [T; N]) -> BinaryHeap<T>
use std::collections::BinaryHeap;
let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
while let Some((a, b)) = h1.pop().zip(h2.pop()) {
assert_eq!(a, b);
}1.5.0 · sourceimpl<T> From<BinaryHeap<T>> for Vec<T, Global>
impl<T> From<BinaryHeap<T>> for Vec<T, Global>
1.5.0 · sourceimpl<T> From<Vec<T, Global>> for BinaryHeap<T> where
T: Ord,
impl<T> From<Vec<T, Global>> for BinaryHeap<T> where
T: Ord,
sourcefn from(vec: Vec<T, Global>) -> BinaryHeap<T>
fn from(vec: Vec<T, Global>) -> BinaryHeap<T>
Converts a Vec<T> into a BinaryHeap<T>.
This conversion happens in-place, and has O(n) time complexity.
sourceimpl<T> FromIterator<T> for BinaryHeap<T> where
T: Ord,
impl<T> FromIterator<T> for BinaryHeap<T> where
T: Ord,
sourcefn from_iter<I>(iter: I) -> BinaryHeap<T> where
I: IntoIterator<Item = T>,
fn from_iter<I>(iter: I) -> BinaryHeap<T> where
I: IntoIterator<Item = T>,
Creates a value from an iterator. Read more
sourceimpl<T> FromParallelIterator<T> for BinaryHeap<T> where
T: Ord + Send,
impl<T> FromParallelIterator<T> for BinaryHeap<T> where
T: Ord + Send,
Collects items from a parallel iterator into a binaryheap. The heap-ordering is calculated serially after all items are collected.
sourcefn from_par_iter<I>(par_iter: I) -> BinaryHeap<T> where
I: IntoParallelIterator<Item = T>,
fn from_par_iter<I>(par_iter: I) -> BinaryHeap<T> where
I: IntoParallelIterator<Item = T>,
Creates an instance of the collection from the parallel iterator par_iter. Read more
sourceimpl<'a, T> IntoIterator for &'a BinaryHeap<T>
impl<'a, T> IntoIterator for &'a BinaryHeap<T>
sourceimpl<T> IntoIterator for BinaryHeap<T>
impl<T> IntoIterator for BinaryHeap<T>
sourcefn into_iter(self) -> IntoIter<T>
fn into_iter(self) -> IntoIter<T>
Creates a consuming iterator, that is, one that moves each value out of the binary heap in arbitrary order. The binary heap cannot be used after calling this.
Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order
for x in heap.into_iter() {
// x has type i32, not &i32
println!("{x}");
}type Item = T
type Item = T
The type of the elements being iterated over.
sourceimpl<T> IntoParallelIterator for BinaryHeap<T> where
T: Ord + Send,
impl<T> IntoParallelIterator for BinaryHeap<T> where
T: Ord + Send,
type Item = T
type Item = T
The type of item that the parallel iterator will produce.
sourcefn into_par_iter(self) -> <BinaryHeap<T> as IntoParallelIterator>::Iter
fn into_par_iter(self) -> <BinaryHeap<T> as IntoParallelIterator>::Iter
Converts self into a parallel iterator. Read more
sourceimpl<'a, T> IntoParallelIterator for &'a BinaryHeap<T> where
T: Ord + Sync,
impl<'a, T> IntoParallelIterator for &'a BinaryHeap<T> where
T: Ord + Sync,
type Item = <&'a BinaryHeap<T> as IntoIterator>::Item
type Item = <&'a BinaryHeap<T> as IntoIterator>::Item
The type of item that the parallel iterator will produce.
sourcefn into_par_iter(self) -> <&'a BinaryHeap<T> as IntoParallelIterator>::Iter
fn into_par_iter(self) -> <&'a BinaryHeap<T> as IntoParallelIterator>::Iter
Converts self into a parallel iterator. Read more
sourceimpl<'a, T> ParallelDrainFull for &'a mut BinaryHeap<T> where
T: Ord + Send,
impl<'a, T> ParallelDrainFull for &'a mut BinaryHeap<T> where
T: Ord + Send,
type Item = T
type Item = T
The type of item that the parallel iterator will produce.
This is usually the same as IntoParallelIterator::Item. Read more
sourcefn par_drain(self) -> <&'a mut BinaryHeap<T> as ParallelDrainFull>::Iter
fn par_drain(self) -> <&'a mut BinaryHeap<T> as ParallelDrainFull>::Iter
Returns a draining parallel iterator over an entire collection. Read more
sourceimpl<'a, T> ParallelExtend<&'a T> for BinaryHeap<T> where
T: 'a + Copy + Ord + Send + Sync,
impl<'a, T> ParallelExtend<&'a T> for BinaryHeap<T> where
T: 'a + Copy + Ord + Send + Sync,
Extends a binary heap with copied items from a parallel iterator.
sourcefn par_extend<I>(&mut self, par_iter: I) where
I: IntoParallelIterator<Item = &'a T>,
fn par_extend<I>(&mut self, par_iter: I) where
I: IntoParallelIterator<Item = &'a T>,
Extends an instance of the collection with the elements drawn
from the parallel iterator par_iter. Read more
sourceimpl<T> ParallelExtend<T> for BinaryHeap<T> where
T: Ord + Send,
impl<T> ParallelExtend<T> for BinaryHeap<T> where
T: Ord + Send,
Extends a binary heap with items from a parallel iterator.
sourcefn par_extend<I>(&mut self, par_iter: I) where
I: IntoParallelIterator<Item = T>,
fn par_extend<I>(&mut self, par_iter: I) where
I: IntoParallelIterator<Item = T>,
Extends an instance of the collection with the elements drawn
from the parallel iterator par_iter. Read more
Auto Trait Implementations
impl<T> RefUnwindSafe for BinaryHeap<T> where
T: RefUnwindSafe,
impl<T> Send for BinaryHeap<T> where
T: Send,
impl<T> Sync for BinaryHeap<T> where
T: Sync,
impl<T> Unpin for BinaryHeap<T> where
T: Unpin,
impl<T> UnwindSafe for BinaryHeap<T> where
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<Target, Original> Into2<Target> for Original where
Target: From2<Original>,
impl<Target, Original> Into2<Target> for Original where
Target: From2<Original>,
fn into2(self) -> Target
fn into2(self) -> Target
Performs the conversion.
sourceimpl<'data, I> IntoParallelRefIterator<'data> for I where
I: 'data + ?Sized,
&'data I: IntoParallelIterator,
impl<'data, I> IntoParallelRefIterator<'data> for I where
I: 'data + ?Sized,
&'data I: IntoParallelIterator,
type Iter = <&'data I as IntoParallelIterator>::Iter
type Iter = <&'data I as IntoParallelIterator>::Iter
The type of the parallel iterator that will be returned.
type Item = <&'data I as IntoParallelIterator>::Item
type Item = <&'data I as IntoParallelIterator>::Item
The type of item that the parallel iterator will produce.
This will typically be an &'data T reference type. Read more
sourcefn par_iter(&'data self) -> <I as IntoParallelRefIterator<'data>>::Iter
fn par_iter(&'data self) -> <I as IntoParallelRefIterator<'data>>::Iter
Converts self into a parallel iterator. Read more
impl<T> IntoResult<T> for T
impl<T> IntoResult<T> for T
type Err = Infallible
fn into_result(self) -> Result<T, <T as IntoResult<T>>::Err>
impl<T> Pointable for T
impl<T> Pointable for T
sourceimpl<R, P> ReadPrimitive<R> for P where
R: Read + ReadEndian<P>,
P: Default,
impl<R, P> ReadPrimitive<R> for P where
R: Read + ReadEndian<P>,
P: Default,
sourcefn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
sourcefn read_from_big_endian(read: &mut R) -> Result<Self, Error>
fn read_from_big_endian(read: &mut R) -> Result<Self, Error>
Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
sourcefn read_from_native_endian(read: &mut R) -> Result<Self, Error>
fn read_from_native_endian(read: &mut R) -> Result<Self, Error>
Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
sourceimpl<Target, Original> VectorizedInto<Target> for Original where
Target: VectorizedFrom<Original>,
impl<Target, Original> VectorizedInto<Target> for Original where
Target: VectorizedFrom<Original>,
sourcefn vectorized_into(self) -> Target
fn vectorized_into(self) -> Target
Performs the conversion.
