pub trait RuntimeLinearMemory: Send + Sync {
    fn byte_size(&self) -> usize;
    fn maximum_byte_size(&self) -> Option<usize>;
    fn grow_to(&mut self, size: usize) -> Result<()>;
    fn vmmemory(&mut self) -> VMMemoryDefinition;
    fn needs_init(&self) -> bool;
    fn as_any_mut(&mut self) -> &mut dyn Any;

    fn grow(
        &mut self,
        delta_pages: u64,
        store: Option<&mut dyn Store>
    ) -> Result<Option<(usize, usize)>, Error> { ... } }
Expand description

A linear memory

Required Methods§

Returns the number of allocated bytes.

Returns the maximum number of bytes the memory can grow to. Returns None if the memory is unbounded.

Grow memory to the specified amount of bytes.

Returns an error if memory can’t be grown by the specified amount of bytes.

Return a VMMemoryDefinition for exposing the memory to compiled wasm code.

Does this memory need initialization? It may not if it already has initial contents courtesy of the MemoryImage passed to RuntimeMemoryCreator::new_memory().

Used for optional dynamic downcasting.

Provided Methods§

Grows a memory by delta_pages.

This performs the necessary checks on the growth before delegating to the underlying grow_to implementation. A default implementation of this memory is provided here since this is assumed to be the same for most kinds of memory; one exception is shared memory, which must perform all the steps of the default implementation plus the required locking.

The store is used only for error reporting.

Examples found in repository?
src/memory.rs (line 497)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    pub fn grow(
        &self,
        delta_pages: u64,
        store: Option<&mut dyn Store>,
    ) -> Result<Option<(usize, usize)>, Error> {
        let mut memory = self.0.memory.write().unwrap();
        let result = memory.grow(delta_pages, store)?;
        if let Some((_old_size_in_bytes, new_size_in_bytes)) = result {
            // Store the new size to the `VMMemoryDefinition` for JIT-generated
            // code (and runtime functions) to access. No other code can be
            // growing this memory due to the write lock, but code in other
            // threads could have access to this shared memory and we want them
            // to see the most consistent version of the `current_length`; a
            // weaker consistency is possible if we accept them seeing an older,
            // smaller memory size (assumption: memory only grows) but presently
            // we are aiming for accuracy.
            //
            // Note that it could be possible to access a memory address that is
            // now-valid due to changes to the page flags in `grow` above but
            // beyond the `memory.size` that we are about to assign to. In these
            // and similar cases, discussion in the thread proposal concluded
            // that: "multiple accesses in one thread racing with another
            // thread's `memory.grow` that are in-bounds only after the grow
            // commits may independently succeed or trap" (see
            // https://github.com/WebAssembly/threads/issues/26#issuecomment-433930711).
            // In other words, some non-determinism is acceptable when using
            // `memory.size` on work being done by `memory.grow`.
            self.0
                .def
                .0
                .current_length
                .store(new_size_in_bytes, Ordering::SeqCst);
        }
        Ok(result)
    }

    /// Implementation of `memory.atomic.notify` for this shared memory.
    pub fn atomic_notify(&self, addr_index: u64, count: u32) -> Result<u32, Trap> {
        validate_atomic_addr(&self.0.def.0, addr_index, 4, 4)?;
        Ok(self.0.spot.unpark(addr_index, count))
    }

    /// Implementation of `memory.atomic.wait32` for this shared memory.
    pub fn atomic_wait32(
        &self,
        addr_index: u64,
        expected: u32,
        timeout: Option<Instant>,
    ) -> Result<WaitResult, Trap> {
        let addr = validate_atomic_addr(&self.0.def.0, addr_index, 4, 4)?;
        // SAFETY: `addr_index` was validated by `validate_atomic_addr` above.
        assert!(std::mem::size_of::<AtomicU32>() == 4);
        assert!(std::mem::align_of::<AtomicU32>() <= 4);
        let atomic = unsafe { &*(addr as *const AtomicU32) };

        // We want the sequential consistency of `SeqCst` to ensure that the `load` sees the value that the `notify` will/would see.
        // All WASM atomic operations are also `SeqCst`.
        let validate = || atomic.load(Ordering::SeqCst) == expected;

        Ok(self.0.spot.park(addr_index, validate, timeout))
    }

    /// Implementation of `memory.atomic.wait64` for this shared memory.
    pub fn atomic_wait64(
        &self,
        addr_index: u64,
        expected: u64,
        timeout: Option<Instant>,
    ) -> Result<WaitResult, Trap> {
        let addr = validate_atomic_addr(&self.0.def.0, addr_index, 8, 8)?;
        // SAFETY: `addr_index` was validated by `validate_atomic_addr` above.
        assert!(std::mem::size_of::<AtomicU64>() == 8);
        assert!(std::mem::align_of::<AtomicU64>() <= 8);
        let atomic = unsafe { &*(addr as *const AtomicU64) };

        // We want the sequential consistency of `SeqCst` to ensure that the `load` sees the value that the `notify` will/would see.
        // All WASM atomic operations are also `SeqCst`.
        let validate = || atomic.load(Ordering::SeqCst) == expected;

        Ok(self.0.spot.park(addr_index, validate, timeout))
    }
}

/// Shared memory needs some representation of a `VMMemoryDefinition` for
/// JIT-generated code to access. This structure owns the base pointer and
/// length to the actual memory and we share this definition across threads by:
/// - never changing the base pointer; according to the specification, shared
///   memory must be created with a known maximum size so it can be allocated
///   once and never moved
/// - carefully changing the length, using atomic accesses in both the runtime
///   and JIT-generated code.
struct LongTermVMMemoryDefinition(VMMemoryDefinition);
unsafe impl Send for LongTermVMMemoryDefinition {}
unsafe impl Sync for LongTermVMMemoryDefinition {}

/// Proxy all calls through the [`RwLock`].
impl RuntimeLinearMemory for SharedMemory {
    fn byte_size(&self) -> usize {
        self.0.memory.read().unwrap().byte_size()
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.0.memory.read().unwrap().maximum_byte_size()
    }

    fn grow(
        &mut self,
        delta_pages: u64,
        store: Option<&mut dyn Store>,
    ) -> Result<Option<(usize, usize)>, Error> {
        SharedMemory::grow(self, delta_pages, store)
    }

    fn grow_to(&mut self, size: usize) -> Result<()> {
        self.0.memory.write().unwrap().grow_to(size)
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        // `vmmemory()` is used for writing the `VMMemoryDefinition` of a memory
        // into its `VMContext`; this should never be possible for a shared
        // memory because the only `VMMemoryDefinition` for it should be stored
        // in its own `def` field.
        unreachable!()
    }

    fn needs_init(&self) -> bool {
        self.0.memory.read().unwrap().needs_init()
    }

    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }
}

/// Representation of a runtime wasm linear memory.
pub struct Memory(Box<dyn RuntimeLinearMemory>);

impl Memory {
    /// Create a new dynamic (movable) memory instance for the specified plan.
    pub fn new_dynamic(
        plan: &MemoryPlan,
        creator: &dyn RuntimeMemoryCreator,
        store: &mut dyn Store,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        let (minimum, maximum) = Self::limit_new(plan, Some(store))?;
        let allocation = creator.new_memory(plan, minimum, maximum, memory_image)?;
        let allocation = if plan.memory.shared {
            Box::new(SharedMemory::wrap(plan, allocation, plan.memory)?)
        } else {
            allocation
        };
        Ok(Memory(allocation))
    }

    /// Create a new static (immovable) memory instance for the specified plan.
    pub fn new_static(
        plan: &MemoryPlan,
        base: &'static mut [u8],
        memory_image: MemoryImageSlot,
        store: &mut dyn Store,
    ) -> Result<Self> {
        let (minimum, maximum) = Self::limit_new(plan, Some(store))?;
        let pooled_memory = StaticMemory::new(base, minimum, maximum, memory_image)?;
        let allocation = Box::new(pooled_memory);
        let allocation: Box<dyn RuntimeLinearMemory> = if plan.memory.shared {
            // FIXME: since the pooling allocator owns the memory allocation
            // (which is torn down with the instance), the current shared memory
            // implementation will cause problems; see
            // https://github.com/bytecodealliance/wasmtime/issues/4244.
            todo!("using shared memory with the pooling allocator is a work in progress");
        } else {
            allocation
        };
        Ok(Memory(allocation))
    }

    /// Calls the `store`'s limiter to optionally prevent a memory from being allocated.
    ///
    /// Returns the minimum size and optional maximum size of the memory, in
    /// bytes.
    fn limit_new(
        plan: &MemoryPlan,
        store: Option<&mut dyn Store>,
    ) -> Result<(usize, Option<usize>)> {
        // Sanity-check what should already be true from wasm module validation.
        let absolute_max = if plan.memory.memory64 {
            WASM64_MAX_PAGES
        } else {
            WASM32_MAX_PAGES
        };
        assert!(plan.memory.minimum <= absolute_max);
        assert!(plan.memory.maximum.is_none() || plan.memory.maximum.unwrap() <= absolute_max);

        // This is the absolute possible maximum that the module can try to
        // allocate, which is our entire address space minus a wasm page. That
        // shouldn't ever actually work in terms of an allocation because
        // presumably the kernel wants *something* for itself, but this is used
        // to pass to the `store`'s limiter for a requested size
        // to approximate the scale of the request that the wasm module is
        // making. This is necessary because the limiter works on `usize` bytes
        // whereas we're working with possibly-overflowing `u64` calculations
        // here. To actually faithfully represent the byte requests of modules
        // we'd have to represent things as `u128`, but that's kinda
        // overkill for this purpose.
        let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);

        // If the minimum memory size overflows the size of our own address
        // space, then we can't satisfy this request, but defer the error to
        // later so the `store` can be informed that an effective oom is
        // happening.
        let minimum = plan
            .memory
            .minimum
            .checked_mul(WASM_PAGE_SIZE_U64)
            .and_then(|m| usize::try_from(m).ok());

        // The plan stores the maximum size in units of wasm pages, but we
        // use units of bytes. Unlike for the `minimum` size we silently clamp
        // the effective maximum size to `absolute_max` above if the maximum is
        // too large. This should be ok since as a wasm runtime we get to
        // arbitrarily decide the actual maximum size of memory, regardless of
        // what's actually listed on the memory itself.
        let mut maximum = plan.memory.maximum.map(|max| {
            usize::try_from(max)
                .ok()
                .and_then(|m| m.checked_mul(WASM_PAGE_SIZE))
                .unwrap_or(absolute_max)
        });

        // If this is a 32-bit memory and no maximum is otherwise listed then we
        // need to still specify a maximum size of 4GB. If the host platform is
        // 32-bit then there's no need to limit the maximum this way since no
        // allocation of 4GB can succeed, but for 64-bit platforms this is
        // required to limit memories to 4GB.
        if !plan.memory.memory64 && maximum.is_none() {
            maximum = usize::try_from(1u64 << 32).ok();
        }

        // Inform the store's limiter what's about to happen. This will let the
        // limiter reject anything if necessary, and this also guarantees that
        // we should call the limiter for all requested memories, even if our
        // `minimum` calculation overflowed. This means that the `minimum` we're
        // informing the limiter is lossy and may not be 100% accurate, but for
        // now the expected uses of limiter means that's ok.
        if let Some(store) = store {
            // We ignore the store limits for shared memories since they are
            // technically not created within a store (though, trickily, they
            // may be associated with one in order to get a `vmctx`).
            if !plan.memory.shared {
                if !store.memory_growing(0, minimum.unwrap_or(absolute_max), maximum)? {
                    bail!(
                        "memory minimum size of {} pages exceeds memory limits",
                        plan.memory.minimum
                    );
                }
            }
        }

        // At this point we need to actually handle overflows, so bail out with
        // an error if we made it this far.
        let minimum = minimum.ok_or_else(|| {
            format_err!(
                "memory minimum size of {} pages exceeds memory limits",
                plan.memory.minimum
            )
        })?;
        Ok((minimum, maximum))
    }

    /// Returns the number of allocated wasm pages.
    pub fn byte_size(&self) -> usize {
        self.0.byte_size()
    }

    /// Returns the maximum number of pages the memory can grow to at runtime.
    ///
    /// Returns `None` if the memory is unbounded.
    ///
    /// The runtime maximum may not be equal to the maximum from the linear memory's
    /// Wasm type when it is being constrained by an instance allocator.
    pub fn maximum_byte_size(&self) -> Option<usize> {
        self.0.maximum_byte_size()
    }

    /// Returns whether or not this memory needs initialization. It
    /// may not if it already has initial content thanks to a CoW
    /// mechanism.
    pub(crate) fn needs_init(&self) -> bool {
        self.0.needs_init()
    }

    /// Grow memory by the specified amount of wasm pages.
    ///
    /// Returns `None` if memory can't be grown by the specified amount
    /// of wasm pages. Returns `Some` with the old size of memory, in bytes, on
    /// successful growth.
    ///
    /// # Safety
    ///
    /// Resizing the memory can reallocate the memory buffer for dynamic memories.
    /// An instance's `VMContext` may have pointers to the memory's base and will
    /// need to be fixed up after growing the memory.
    ///
    /// Generally, prefer using `InstanceHandle::memory_grow`, which encapsulates
    /// this unsafety.
    ///
    /// Ensure that the provided Store is not used to get access any Memory
    /// which lives inside it.
    pub unsafe fn grow(
        &mut self,
        delta_pages: u64,
        store: Option<&mut dyn Store>,
    ) -> Result<Option<usize>, Error> {
        self.0
            .grow(delta_pages, store)
            .map(|opt| opt.map(|(old, _new)| old))
    }

Implementors§

Proxy all calls through the RwLock.