# [−][src]Struct vex::Vector2

```#[repr(C, packed)]pub struct Vector2 {
pub x: f32,
pub y: f32,
}```

## Fields

`x: f32``y: f32`

## Methods

### `impl Vector2`[src]

#### `pub fn new() -> Vector2`[src]

Creates a vector <0.0, 0.0>

# Examples

```use vex::Vector2;

let actual = Vector2::new();
let expected = Vector2 { x: 0.0, y: 0.0 };
assert_eq!(actual, expected);```

#### `pub fn one() -> Vector2`[src]

Creates a vector <1.0, 1.0>

# Examples

```use vex::Vector2;

let actual = Vector2::one();
let expected = Vector2 { x: 1.0, y: 1.0 };
assert_eq!(actual, expected);```

#### `pub fn make(x: f32, y: f32) -> Vector2`[src]

Creates a vector from the provided values

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0);
let expected = Vector2 { x: 1.0, y: 2.0 };
assert_eq!(actual, expected);```

#### `pub fn dot(a: &Vector2, b: &Vector2) -> f32`[src]

Find the dot product between two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 0.0);
let b = Vector2::make(0.0, 1.0);
let actual = Vector2::dot(&a, &b);
let expected = 0.0;
assert_eq!(actual, expected);```

#### `pub fn cross(a: &Vector2, b: &Vector2) -> f32`[src]

Find the cross product between two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 0.0);
let b = Vector2::make(0.0, 1.0);
let actual = Vector2::cross(&a, &b);
let expected = 1.0;
assert_eq!(actual, expected);```

#### `pub fn cross_scalar_vec(s: f32, v: &Vector2) -> Vector2`[src]

Find the cross product between a scalar (left) and vector (right)

# Examples

```use vex::Vector2;

let s = 1.0;
let v = Vector2::make(1.0, 0.0);
let actual = Vector2::cross_scalar_vec(s, &v);
let expected = Vector2::make(0.0, 1.0);
assert_eq!(actual, expected);```

#### `pub fn cross_vec_scalar(v: &Vector2, s: f32) -> Vector2`[src]

Find the cross product between a vector (left) and scalar (right)

# Examples

```use vex::Vector2;

let s = 1.0;
let v = Vector2::make(1.0, 0.0);
let actual = Vector2::cross_vec_scalar(&v, s);
let expected = Vector2::make(0.0, -1.0);
assert_eq!(actual, expected);```

#### `pub fn min(a: &Vector2, b: &Vector2) -> Vector2`[src]

Find the minimum (component-wise) vector between two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 4.0);
let b = Vector2::make(2.0, 3.0);
let actual = Vector2::min(&a, &b);
let expected = Vector2::make(1.0, 3.0);
assert_eq!(actual, expected);```

#### `pub fn max(a: &Vector2, b: &Vector2) -> Vector2`[src]

Find the maximum (component-wise) vector between two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 4.0);
let b = Vector2::make(2.0, 3.0);
let actual = Vector2::max(&a, &b);
let expected = Vector2::make(2.0, 4.0);
assert_eq!(actual, expected);```

#### `pub fn clamp(&mut self, a: &Vector2, b: &Vector2)`[src]

Find the clamped (component-wise) vector between two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 3.0);
let b = Vector2::make(2.0, 4.0);
let mut actual = Vector2::make(0.0, 5.0);
actual.clamp(&a, &b);
let expected = Vector2::make(1.0, 4.0);
assert_eq!(actual, expected);```

#### `pub fn set(&mut self, x: f32, y: f32)`[src]

Set the components of a vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::new();
actual.set(1.0, 2.0);
let expected = Vector2::make(1.0, 2.0);
assert_eq!(actual, expected);```

#### `pub fn mag(&self) -> f32`[src]

Get the magnitude of the vector

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0).mag();
let expected = 2.2360679775;
assert_eq!(actual, expected);```

#### `pub fn mag_sq(&self) -> f32`[src]

Get the squared magnitude of the vector

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0).mag_sq();
let expected = 5.0;
assert_eq!(actual, expected);```

#### `pub fn norm(&mut self) -> f32`[src]

Normalize the vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual.norm();
let expected = Vector2::make(0.4472135955, 0.894427191);
assert_eq!(actual, expected);```

#### `pub fn abs(&mut self)`[src]

Set the components of a vector to their absolute values

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(-1.0, -2.0);
actual.abs();
let expected = Vector2::make(1.0, 2.0);
assert_eq!(actual, expected);```

Skew the vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual.skew();
let expected = Vector2::make(-2.0, 1.0);
assert_eq!(actual, expected);```

#### `pub fn is_valid(&self) -> bool`[src]

Determine whether or not all components of the vector are valid

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0);
assert!(actual.is_valid());```

## Trait Implementations

### `impl Add<Vector2> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `+` operator.

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 2.0);
let b = Vector2::make(3.0, 4.0);
let actual = a + b;
let expected = Vector2::make(4.0, 6.0);
assert_eq!(actual, expected);```

### `impl Add<f32> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `+` operator.

#### `fn add(self, _rhs: f32) -> Vector2`[src]

Find the resulting vector by adding a scalar to a vector's components

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0) + 1.0;
let expected = Vector2::make(2.0, 3.0);
assert_eq!(actual, expected);```

### `impl AddAssign<Vector2> for Vector2`[src]

#### `fn add_assign(&mut self, _rhs: Vector2)`[src]

Increment a vector by another vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual += Vector2::make(1.0, 2.0);
let expected = Vector2::make(2.0, 4.0);
assert_eq!(actual, expected);```

### `impl AddAssign<f32> for Vector2`[src]

#### `fn add_assign(&mut self, _rhs: f32)`[src]

Increment a vector by a scalar

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual += 10.0;
let expected = Vector2::make(11.0, 12.0);
assert_eq!(actual, expected);```

### `impl Div<Vector2> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `/` operator.

#### `fn div(self, _rhs: Vector2) -> Vector2`[src]

Divide two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 2.0);
let b = Vector2::make(2.0, 8.0);
let actual = a / b;
let expected = Vector2::make(0.5, 0.25);
assert_eq!(actual, expected);```

### `impl Div<f32> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `/` operator.

#### `fn div(self, _rhs: f32) -> Vector2`[src]

Find the resulting vector by dividing a scalar to a vector's components

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0) / 2.0;
let expected = Vector2::make(0.5, 1.0);
assert_eq!(actual, expected);```

### `impl DivAssign<Vector2> for Vector2`[src]

#### `fn div_assign(&mut self, _rhs: Vector2)`[src]

Divide a vector by another vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual /= Vector2::make(2.0, 8.0);
let expected = Vector2::make(0.5, 0.25);
assert_eq!(actual, expected);```

### `impl DivAssign<f32> for Vector2`[src]

#### `fn div_assign(&mut self, _rhs: f32)`[src]

Divide a vector by a scalar

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual /= 2.0;
let expected = Vector2::make(0.5, 1.0);
assert_eq!(actual, expected);```

### `impl From<Vector2> for Vector3`[src]

#### `fn from(item: Vector2) -> Vector3`[src]

Creates a Vector3 from the components of a Vector2

# Examples

```use vex::Vector2;
use vex::Vector3;

let input = Vector2::make(1.0, 2.0);
let actual = Vector3::from(input);
let expected = Vector3 { x: 1.0, y: 2.0, z: 0.0 };
assert_eq!(actual, expected);```

### `impl From<Vector3> for Vector2`[src]

#### `fn from(item: Vector3) -> Self`[src]

Creates a Vector2 from the components of a Vector3

# Examples

```use vex::Vector2;
use vex::Vector3;

let input = Vector3::make(1.0, 2.0, 3.0);
let actual = Vector2::from(input);
let expected = Vector2 { x: 1.0, y: 2.0 };
assert_eq!(actual, expected);```

### `impl Index<u32> for Vector2`[src]

#### `type Output = f32`

The returned type after indexing.

#### `fn index(&self, index: u32) -> &f32`[src]

Looks up a component by index

# Examples

```use vex::Vector2;

let mut v = Vector2::make(1.0, 2.0);
assert_eq!(v[0], 1.0);
assert_eq!(v[1], 2.0);```

### `impl IndexMut<u32> for Vector2`[src]

#### `fn index_mut<'a>(&'a mut self, index: u32) -> &'a mut f32`[src]

Mutate a component by index

# Examples

```use vex::Vector2;

let mut v = Vector2::new();
v[0] = 3.0;
v[1] = 4.0;
assert_eq!(v[0], 3.0);
assert_eq!(v[1], 4.0);```

### `impl Matrix<Vector2> for Matrix2`[src]

#### `fn transform_point(&self, point: &Vector2) -> Vector2`[src]

Find the resulting vector given a vector and matrix

# Examples

```use vex::Matrix;
use vex::Matrix2;
use vex::Vector2;

let m = Matrix2::make(1.0, 2.0, 3.0, 4.0);
let v = Vector2::make(1.0, 2.0);
let actual = m.transform_point(&v);
let expected = Vector2::make(7.0, 10.0);
assert_eq!(actual, expected);```

### `impl Matrix<Vector2> for Matrix3`[src]

#### `fn transform_point(&self, point: &Vector2) -> Vector2`[src]

Find the resulting vector given a vector and matrix

# Examples

```use vex::Matrix;
use vex::Matrix3;
use vex::Vector2;

let m = Matrix3::make(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0);
let v = Vector2::make(1.0, 2.0);
let actual = m.transform_point(&v);
let expected = Vector2::make(16.0, 20.0);
assert_eq!(actual, expected);```

### `impl Mul<Vector2> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `*` operator.

#### `fn mul(self, _rhs: Vector2) -> Vector2`[src]

Multiply two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 2.0);
let b = Vector2::make(2.0, 3.0);
let actual = a * b;
let expected = Vector2::make(2.0, 6.0);
assert_eq!(actual, expected);```

### `impl Mul<f32> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `*` operator.

#### `fn mul(self, _rhs: f32) -> Vector2`[src]

Find the resulting vector by multiplying a scalar to a vector's components

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0) * 2.0;
let expected = Vector2::make(2.0, 4.0);
assert_eq!(actual, expected);```

### `impl MulAssign<Vector2> for Vector2`[src]

#### `fn mul_assign(&mut self, _rhs: Vector2)`[src]

Multiply a vector by another vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual *= Vector2::make(2.0, 3.0);
let expected = Vector2::make(2.0, 6.0);
assert_eq!(actual, expected);```

### `impl MulAssign<f32> for Vector2`[src]

#### `fn mul_assign(&mut self, _rhs: f32)`[src]

Multiply a vector by a scalar

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual *= 2.0;
let expected = Vector2::make(2.0, 4.0);
assert_eq!(actual, expected);```

### `impl Neg for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `-` operator.

#### `fn neg(self) -> Vector2`[src]

Negates all components in a vector

# Examples

```use vex::Vector2;

let actual = -Vector2::make(1.0, 2.0);
let expected = Vector2::make(-1.0, -2.0);
assert_eq!(actual, expected);```

### `impl PartialEq<Vector2> for Vector2`[src]

#### `fn eq(&self, _rhs: &Vector2) -> bool`[src]

Determines if two vectors' components are equivalent

# Examples

```use vex::Vector2;

assert!(Vector2::new() == Vector2::new());```

### `impl Sub<Vector2> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `-` operator.

#### `fn sub(self, _rhs: Vector2) -> Vector2`[src]

Subtract two vectors

# Examples

```use vex::Vector2;

let a = Vector2::make(1.0, 2.0);
let b = Vector2::make(4.0, 3.0);
let actual = a - b;
let expected = Vector2::make(-3.0, -1.0);
assert_eq!(actual, expected);```

### `impl Sub<f32> for Vector2`[src]

#### `type Output = Vector2`

The resulting type after applying the `-` operator.

#### `fn sub(self, _rhs: f32) -> Vector2`[src]

Find the resulting vector by subtracting a scalar from a vector's components

# Examples

```use vex::Vector2;

let actual = Vector2::make(1.0, 2.0) - 10.0;
let expected = Vector2::make(-9.0, -8.0);
assert_eq!(actual, expected);```

### `impl SubAssign<Vector2> for Vector2`[src]

#### `fn sub_assign(&mut self, _rhs: Vector2)`[src]

Decrement a vector by another vector

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual -= Vector2::make(1.0, 2.0);
assert_eq!(actual, Vector2::new());```

### `impl SubAssign<f32> for Vector2`[src]

#### `fn sub_assign(&mut self, _rhs: f32)`[src]

Decrement a vector by a scalar

# Examples

```use vex::Vector2;

let mut actual = Vector2::make(1.0, 2.0);
actual -= 1.0;
let expected = Vector2::make(0.0, 1.0);
assert_eq!(actual, expected);```

## Blanket Implementations

### `impl<T> ToOwned for T where    T: Clone, `[src]

#### `type Owned = T`

The resulting type after obtaining ownership.

### `impl<T, U> TryFrom<U> for T where    U: Into<T>, `[src]

#### `type Error = Infallible`

The type returned in the event of a conversion error.

### `impl<T, U> TryInto<U> for T where    U: TryFrom<T>, `[src]

#### `type Error = <U as TryFrom<T>>::Error`

The type returned in the event of a conversion error.