1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
use std::ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Rem, RemAssign, Sub, SubAssign};

use num::Num;
use num::traits::AsPrimitive;

/// A structure representing a fixed-length array of arbitrary elements and arbitrary length.
/// Since it was created primarily to represent mathematical vectors and colors, it supports four arithmetic operations.
///
/// 任意の要素、任意の長さの固定長配列を表す構造体です。
/// 主に数学的なベクトルや色を表すために作成したため、四則演算をサポートしています。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new([1, 2, 3]);
/// let vec2 = VecX::new([4, 5, 6]);
///
/// // Add
/// assert_eq!(vec1 + vec2, VecX::new([5, 7, 9]));
/// // Sub
/// assert_eq!(vec1 - vec2, VecX::new([-3, -3, -3]));
/// // Mul
/// assert_eq!(vec1 * vec2, VecX::new([4, 10, 18]));
/// // Div
/// assert_eq!(vec1 / vec2, VecX::new([0, 0, 0]));
/// // Rem
/// assert_eq!(vec1 % vec2, VecX::new([1, 2, 3]));
///
/// // AddAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec += VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([5, 7, 9]));
/// // SubAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec -= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([-3, -3, -3]));
/// // MulAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec *= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([4, 10, 18]));
/// // DivAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec /= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([0, 0, 0]));
/// // RemAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec %= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([1, 2, 3]));
/// ```
///
/// You can also perform arithmetic operations with numeric values.
///
/// 数値型の値との演算も可能です。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
///
/// // Add
/// assert_eq!(vec + 1, VecX::new([2, 3, 4]));
///
/// // Sub
/// assert_eq!(vec - 1, VecX::new([0, 1, 2]));
///
/// // Mul
/// assert_eq!(vec * 2, VecX::new([2, 4, 6]));
///
/// // Div
/// assert_eq!(vec / 2, VecX::new([0, 1, 1]));
///
/// // Rem
/// assert_eq!(vec % 2, VecX::new([1, 0, 1]));
///
/// // AddAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec += 1;
/// assert_eq!(vec, VecX::new([2, 3, 4]));
///
/// // SubAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec -= 1;
/// assert_eq!(vec, VecX::new([0, 1, 2]));
///
/// // MulAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec *= 2;
/// assert_eq!(vec, VecX::new([2, 4, 6]));
///
/// // DivAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec /= 2;
/// assert_eq!(vec, VecX::new([0, 1, 1]));
///
/// // RemAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec %= 2;
/// assert_eq!(vec, VecX::new([1, 0, 1]));
/// ```
///
/// In operations, arrays that implement From/Into traits are implicitly converted to the left-hand side type.
///
/// 演算において、From/Intoトレイトが実装されている配列同士は暗黙的に左辺の型に変換されます。
///
/// ```
/// use vec_x::{VecX};
/// use std::ops::Add;
///
/// let vec1:VecX<f32,3> = VecX::new([1., 2., 3.]);
/// let vec2:VecX<u8,3> = VecX::new([4, 5, 6]);
///
/// let vec3 = vec1 + vec2;
/// ```
/// Arrays that do not implement From/Into trait will fail to compile together.
/// Thus, there is no loss of precision due to implicit type conversion.
///
/// From/Intoトレイトが実装されていない配列同士はコンパイルエラーになります。
/// よって、暗黙的な型変換によって精度が失われることはありません。
///
/// ```compile_fail
/// use vec_x::{VecX};
/// use std::ops::Add;
///
/// let vec1:VecX<f32,3> = VecX::new([1., 2., 3.]);
/// let vec2:VecX<u8,3> = VecX::new([4, 5, 6]);
///
/// let vec3 = vec2 + vec1; // compile error! Cannot add `VecX<f32, 3>` to `VecX<u8, 3>`[E0369]
/// ```
///
/// Element casts are also supported.
///
/// 要素のキャストにも対応しています。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
///
/// let vec_f64:VecX<f64,3> = vec.as_();
/// ```
///
///
/// Non-numeric elements can also be array elements.
///
/// 数値以外を配列要素にすることもできます。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new(["a", "b", "c"]);
/// ```
///
/// ```compile_fail
/// use vec_x::{VecX};
///
///
/// let vec1 = VecX::new(["a", "b", "c"]);
/// let vec2 = VecX::new(["d", "e", "f"]);
///
/// vec1 + vec2; // compile error!
/// ```
///
/// Using type aliases, as shown below, improves code readability.
///
/// 以下のように型エイリアスを使用することで、コードの可読性が向上します。
///
/// ```
/// use vec_x::{VecX};
///
/// type XYZ = VecX<f64, 3>;
/// type RGBA = VecX<u8, 4>;
///
/// struct Point {
///    position: XYZ,
///    color: RGBA,
/// }
///
/// let point = Point {
///    position: XYZ::new([1.0, 2.0, 3.0]),
///    color: RGBA::new([255, 0, 0, 255]),
/// };
/// ```
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct VecX<T, const N: usize>
    where T: Sized + Send
{
    pub data: [T; N],
}

impl<T, const N: usize> Default for VecX<T, N>
    where T: Default + Copy + Sized + Send
{
    fn default() -> Self {
        Self { data: [T::default(); N] }
    }
}

impl<T, const N: usize> VecX<T, N>
    where T: Default + Copy + Sized + Send
{
    /// Generate a new `VecX`.
    ///
    /// 新しい `VecX` を生成する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new([1, 2, 3]);
    /// ```
    pub fn new(data: [T; N]) -> Self {
        Self { data }
    }

    /// Generate a `VecX` initialized with a single value.
    ///
    /// 単一の値で初期化された `VecX` を生成する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new_with(1);
    ///
    /// assert_eq!(vec, VecX::new([1, 1, 1]));
    /// ```
    pub fn new_with(value: T) -> Self
        where
            T: Copy,
    {
        Self { data: [value; N] }
    }


    /// Convert `VecX<T, N>` to `VecX<U, N>`.
    ///
    /// `VecX<T, N>`を`VecX<U, N>`に変換する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec:VecX<u8,3> = VecX::new([1, 2, 3]);
    /// let vec_f64:VecX<f64,3> = vec.into();
    /// ```
    pub fn into<U>(self) -> VecX<U, N>
        where
            T: Into<U>,
            U: Sized + Send
    {
        let data: [U; N] = self.data.map(|v| v.into());
        VecX { data }
    }

    /// Convert `VecX<T, N>` from `VecX<U, N>`.
    ///
    /// `VecX<U, N>`から`VecX<T, N>`に変換する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new([1, 2, 3]);
    /// let vec_i32:VecX<i32,3> = VecX::from(vec);
    /// ```
    pub fn from<U>(vec: VecX<U, N>) -> Self
        where
            T: From<U>,
            U: Sized + Send
    {
        let data: [T; N] = vec.data.map(|v| T::from(v));
        Self { data }
    }

    /// Cast `VecX<T, N>` to `VecX<U, N>`.
    /// Array elements are cast in the same way as numeric types.
    ///
    /// `VecX<T, N>`を`VecX<U, N>`にキャストする。
    /// 配列の要素は数値型と同じ方法でキャストされる。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new([1, 2, 3]);
    ///
    /// let vec_f64:VecX<f64,3> = vec.as_();
    /// ```
    pub fn as_<U>(&self) -> VecX<U, N>
        where
            U: AsPrimitive<T> + Sized + Send,
            T: AsPrimitive<U>
    {
        let data: [U; N] = self.data.map(|v| v.as_());
        VecX { data }
    }

    /// Match the number of elements in `VecX<T, N>` to M.
    /// If `M > T`, empty elements are filled with the value of `T::default()`.
    ///
    /// `VecX<T, N>`の要素数をMに合わせる。
    /// `M > T`である場合、空の要素は`T::default()`の値で満たされる。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new([1, 2, 3]);
    /// assert_eq!(vec.fit::<2>(), VecX::new([1, 2]));
    ///
    /// let vec = VecX::new([1, 2, 3]);
    /// assert_eq!(vec.fit::<5>(), VecX::new([1, 2, 3, 0, 0]));
    /// ```
    pub fn fit<const M: usize>(&self) -> VecX<T, M>
        where T: Default + Copy {
        let mut data = [T::default(); M];

        (0..N.min(M)).for_each(|i| data[i] = self.data[i]);

        VecX { data }
    }

    /// Apply a function to each element of `VecX<T, N>`.
    ///
    /// `VecX<T, N>`の各要素に関数を適用する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let do_something = |v:u32| v.abs_diff(1);
    ///
    /// let vec = VecX::new([1, 2, 3]);
    ///
    /// assert_eq!(vec.batch(do_something), VecX::new([0, 1, 2]));
    /// ```
    pub fn batch<U, F>(self, callback: F) -> VecX<U, N>
        where U: Sized + Send,
              F: Fn(T) -> U
    {
        let data = self.data.map(callback);
        VecX { data }
    }

    /// Apply a function to each element of `VecX<T, N>` and `VecX<U, N>`.
    ///
    /// `VecX<T, N>`と`VecX<U, N>`の各要素に関数を適用する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec1 = VecX::new([1, 5, 3]);
    /// let vec2 = VecX::new([4, 2, 6]);
    ///
    /// assert_eq!(vec1.batch_with(vec2, |a, b| a.min(b)), VecX::new([1, 2, 3]));
    /// ```

    pub fn batch_with<U, V, F>(self, other: VecX<U, N>, callback: F) -> VecX<V, N>
        where
            T: Copy,
            U: Copy + Sized + Send,
            V: Default + Copy + Sized + Send,
            F: Fn(T, U) -> V

    {
        let mut data = [V::default(); N];

        (0..N).for_each(|i| data[i] = callback(self.data[i], other.data[i]));

        VecX { data }
    }
}


impl<T, const N: usize> Index<usize> for VecX<T, N>
    where T: Sized + Send
{
    type Output = T;
    fn index(&self, index: usize) -> &Self::Output {
        &self.data[index]
    }
}

impl<T, const N: usize> IndexMut<usize> for VecX<T, N>
    where T: Sized + Send
{
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.data[index]
    }
}

impl<T, U, const N: usize> Add<VecX<U, N>> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn add(mut self, rhs: VecX<U, N>) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] + rhs.data[i].into());

        self
    }
}

impl<T, U, const N: usize> Add<U> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn add(mut self, rhs: U) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] + rhs.into());

        self
    }
}

impl<T, U, const N: usize> Sub<VecX<U, N>> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn sub(mut self, rhs: VecX<U, N>) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] - rhs.data[i].into());

        self
    }
}

impl<T, U, const N: usize> Sub<U> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn sub(mut self, rhs: U) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] - rhs.into());

        self
    }
}

impl<T, U, const N: usize> Mul<VecX<U, N>> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn mul(mut self, rhs: VecX<U, N>) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] * rhs.data[i].into());

        self
    }
}

impl<T, U, const N: usize> Mul<U> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn mul(mut self, rhs: U) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] * rhs.into());

        self
    }
}

impl<T, U, const N: usize> Div<VecX<U, N>> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn div(mut self, rhs: VecX<U, N>) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] / rhs.data[i].into());

        self
    }
}

impl<T, U, const N: usize> Div<U> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn div(mut self, rhs: U) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] / rhs.into());

        self
    }
}

impl<T, U, const N: usize> Rem<VecX<U, N>> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn rem(mut self, rhs: VecX<U, N>) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] % rhs.data[i].into());

        self
    }
}

impl<T, U, const N: usize> Rem<U> for VecX<T, N>
    where T: Num + Copy + Sized + Send,
          U: Num + Copy + Into<T> + Sized + Send
{
    type Output = Self;

    fn rem(mut self, rhs: U) -> Self::Output {
        (0..N).for_each(|i| self.data[i] = self.data[i] % rhs.into());

        self
    }
}

impl<T, U, const N: usize> AddAssign<VecX<U, N>> for VecX<T, N>
    where T: Num + AddAssign + Copy + Sized + Send,
          U: Num + AddAssign + Copy + Into<T> + Sized + Send
{
    fn add_assign(&mut self, rhs: VecX<U, N>) {
        (0..N).for_each(|i| self.data[i] += rhs.data[i].into());
    }
}

impl<T, U, const N: usize> AddAssign<U> for VecX<T, N>
    where T: Num + AddAssign + Copy + Sized + Send,
          U: Num + AddAssign + Copy + Into<T> + Sized + Send
{
    fn add_assign(&mut self, rhs: U) {
        (0..N).for_each(|i| self.data[i] += rhs.into());
    }
}

impl<T, U, const N: usize> SubAssign<VecX<U, N>> for VecX<T, N>
    where T: Num + SubAssign + Copy + Sized + Send,
          U: Num + SubAssign + Copy + Into<T> + Sized + Send
{
    fn sub_assign(&mut self, rhs: VecX<U, N>) {
        (0..N).for_each(|i| self.data[i] -= rhs.data[i].into());
    }
}

impl<T, U, const N: usize> SubAssign<U> for VecX<T, N>
    where T: Num + SubAssign + Copy + Sized + Send,
          U: Num + SubAssign + Copy + Into<T> + Sized + Send
{
    fn sub_assign(&mut self, rhs: U) {
        (0..N).for_each(|i| self.data[i] -= rhs.into());
    }
}

impl<T, U, const N: usize> MulAssign<VecX<U, N>> for VecX<T, N>
    where T: Num + MulAssign + Copy + Sized + Send,
          U: Num + MulAssign + Copy + Into<T> + Sized + Send
{
    fn mul_assign(&mut self, rhs: VecX<U, N>) {
        (0..N).for_each(|i| self.data[i] *= rhs.data[i].into());
    }
}

impl<T, U, const N: usize> MulAssign<U> for VecX<T, N>
    where T: Num + MulAssign + Copy + Sized + Send,
          U: Num + MulAssign + Copy + Into<T> + Sized + Send
{
    fn mul_assign(&mut self, rhs: U) {
        (0..N).for_each(|i| self.data[i] *= rhs.into());
    }
}

impl<T, U, const N: usize> DivAssign<VecX<U, N>> for VecX<T, N>
    where T: Num + DivAssign + Copy + Sized + Send,
          U: Num + DivAssign + Copy + Into<T> + Sized + Send
{
    fn div_assign(&mut self, rhs: VecX<U, N>) {
        (0..N).for_each(|i| self.data[i] /= rhs.data[i].into());
    }
}

impl<T, U, const N: usize> DivAssign<U> for VecX<T, N>
    where T: Num + DivAssign + Copy + Sized + Send,
          U: Num + DivAssign + Copy + Into<T> + Sized + Send
{
    fn div_assign(&mut self, rhs: U) {
        (0..N).for_each(|i| self.data[i] /= rhs.into());
    }
}

impl<T, U, const N: usize> RemAssign<VecX<U, N>> for VecX<T, N>
    where T: Num + RemAssign + Copy + Sized + Send,
          U: Num + RemAssign + Copy + Into<T> + Sized + Send
{
    fn rem_assign(&mut self, rhs: VecX<U, N>) {
        (0..N).for_each(|i| self.data[i] %= rhs.data[i].into());
    }
}

impl<T, U, const N: usize> RemAssign<U> for VecX<T, N>
    where T: Num + RemAssign + Copy + Sized + Send,
          U: Num + RemAssign + Copy + Into<T> + Sized + Send
{
    fn rem_assign(&mut self, rhs: U) {
        (0..N).for_each(|i| self.data[i] %= rhs.into());
    }
}