1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
use std::ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Rem, RemAssign, Sub, SubAssign};
use num::Num;
use num::traits::AsPrimitive;
/// A structure representing a fixed-length array of arbitrary elements and arbitrary length.
/// Since it was created primarily to represent mathematical vectors and colors, it supports four arithmetic operations.
///
/// 任意の要素、任意の長さの固定長配列を表す構造体です。
/// 主に数学的なベクトルや色を表すために作成したため、四則演算をサポートしています。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new([1, 2, 3]);
/// let vec2 = VecX::new([4, 5, 6]);
///
/// // Add
/// assert_eq!(vec1 + vec2, VecX::new([5, 7, 9]));
/// // Sub
/// assert_eq!(vec1 - vec2, VecX::new([-3, -3, -3]));
/// // Mul
/// assert_eq!(vec1 * vec2, VecX::new([4, 10, 18]));
/// // Div
/// assert_eq!(vec1 / vec2, VecX::new([0, 0, 0]));
/// // Rem
/// assert_eq!(vec1 % vec2, VecX::new([1, 2, 3]));
///
/// // AddAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec += VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([5, 7, 9]));
/// // SubAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec -= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([-3, -3, -3]));
/// // MulAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec *= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([4, 10, 18]));
/// // DivAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec /= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([0, 0, 0]));
/// // RemAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec %= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([1, 2, 3]));
/// ```
///
/// You can also perform arithmetic operations with numeric values.
///
/// 数値型の値との演算も可能です。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
///
/// // Add
/// assert_eq!(vec + 1, VecX::new([2, 3, 4]));
///
/// // Sub
/// assert_eq!(vec - 1, VecX::new([0, 1, 2]));
///
/// // Mul
/// assert_eq!(vec * 2, VecX::new([2, 4, 6]));
///
/// // Div
/// assert_eq!(vec / 2, VecX::new([0, 1, 1]));
///
/// // Rem
/// assert_eq!(vec % 2, VecX::new([1, 0, 1]));
///
/// // AddAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec += 1;
/// assert_eq!(vec, VecX::new([2, 3, 4]));
///
/// // SubAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec -= 1;
/// assert_eq!(vec, VecX::new([0, 1, 2]));
///
/// // MulAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec *= 2;
/// assert_eq!(vec, VecX::new([2, 4, 6]));
///
/// // DivAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec /= 2;
/// assert_eq!(vec, VecX::new([0, 1, 1]));
///
/// // RemAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec %= 2;
/// assert_eq!(vec, VecX::new([1, 0, 1]));
/// ```
///
/// In operations, arrays that implement From/Into traits are implicitly converted to the left-hand side type.
///
/// 演算において、From/Intoトレイトが実装されている配列同士は暗黙的に左辺の型に変換されます。
///
/// ```
/// use vec_x::{VecX};
/// use std::ops::Add;
///
/// let vec1:VecX<f32,3> = VecX::new([1., 2., 3.]);
/// let vec2:VecX<u8,3> = VecX::new([4, 5, 6]);
///
/// let vec3 = vec1 + vec2;
/// ```
/// Arrays that do not implement From/Into trait will fail to compile together.
/// Thus, there is no loss of precision due to implicit type conversion.
///
/// From/Intoトレイトが実装されていない配列同士はコンパイルエラーになります。
/// よって、暗黙的な型変換によって精度が失われることはありません。
///
/// ```compile_fail
/// use vec_x::{VecX};
/// use std::ops::Add;
///
/// let vec1:VecX<f32,3> = VecX::new([1., 2., 3.]);
/// let vec2:VecX<u8,3> = VecX::new([4, 5, 6]);
///
/// let vec3 = vec2 + vec1; // compile error! Cannot add `VecX<f32, 3>` to `VecX<u8, 3>`[E0369]
/// ```
///
/// Element casts are also supported.
///
/// 要素のキャストにも対応しています。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
///
/// let vec_f64:VecX<f64,3> = vec.as_();
/// ```
///
///
/// Non-numeric elements can also be array elements.
///
/// 数値以外を配列要素にすることもできます。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new(["a", "b", "c"]);
/// ```
///
/// ```compile_fail
/// use vec_x::{VecX};
///
///
/// let vec1 = VecX::new(["a", "b", "c"]);
/// let vec2 = VecX::new(["d", "e", "f"]);
///
/// vec1 + vec2; // compile error!
/// ```
///
/// Using type aliases, as shown below, improves code readability.
///
/// 以下のように型エイリアスを使用することで、コードの可読性が向上します。
///
/// ```
/// use vec_x::{VecX};
///
/// type XYZ = VecX<f64, 3>;
/// type RGBA = VecX<u8, 4>;
///
/// struct Point {
/// position: XYZ,
/// color: RGBA,
/// }
///
/// let point = Point {
/// position: XYZ::new([1.0, 2.0, 3.0]),
/// color: RGBA::new([255, 0, 0, 255]),
/// };
/// ```
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct VecX<T, const N: usize>
where T: Sized + Send
{
pub data: [T; N],
}
impl<T, const N: usize> Default for VecX<T, N>
where T: Default + Copy + Sized + Send
{
fn default() -> Self {
Self { data: [T::default(); N] }
}
}
impl<T, const N: usize> VecX<T, N>
where T: Default + Copy + Sized + Send
{
/// Generate a new `VecX`.
///
/// 新しい `VecX` を生成する。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
/// ```
pub fn new(data: [T; N]) -> Self {
Self { data }
}
/// Generate a `VecX` initialized with a single value.
///
/// 単一の値で初期化された `VecX` を生成する。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new_with(1);
///
/// assert_eq!(vec, VecX::new([1, 1, 1]));
/// ```
pub fn new_with(value: T) -> Self
where
T: Copy,
{
Self { data: [value; N] }
}
/// Convert `VecX<T, N>` to `VecX<U, N>`.
///
/// `VecX<T, N>`を`VecX<U, N>`に変換する。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec:VecX<u8,3> = VecX::new([1, 2, 3]);
/// let vec_f64:VecX<f64,3> = vec.into();
/// ```
pub fn into<U>(self) -> VecX<U, N>
where
T: Into<U>,
U: Sized + Send
{
let data: [U; N] = self.data.map(|v| v.into());
VecX { data }
}
/// Convert `VecX<T, N>` from `VecX<U, N>`.
///
/// `VecX<U, N>`から`VecX<T, N>`に変換する。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
/// let vec_i32:VecX<i32,3> = VecX::from(vec);
/// ```
pub fn from<U>(vec: VecX<U, N>) -> Self
where
T: From<U>,
U: Sized + Send
{
let data: [T; N] = vec.data.map(|v| T::from(v));
Self { data }
}
/// Cast `VecX<T, N>` to `VecX<U, N>`.
/// Array elements are cast in the same way as numeric types.
///
/// `VecX<T, N>`を`VecX<U, N>`にキャストする。
/// 配列の要素は数値型と同じ方法でキャストされる。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
///
/// let vec_f64:VecX<f64,3> = vec.as_();
/// ```
pub fn as_<U>(&self) -> VecX<U, N>
where
U: AsPrimitive<T> + Sized + Send,
T: AsPrimitive<U>
{
let data: [U; N] = self.data.map(|v| v.as_());
VecX { data }
}
/// Match the number of elements in `VecX<T, N>` to M.
/// If `M > T`, empty elements are filled with the value of `T::default()`.
///
/// `VecX<T, N>`の要素数をMに合わせる。
/// `M > T`である場合、空の要素は`T::default()`の値で満たされる。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec = VecX::new([1, 2, 3]);
/// assert_eq!(vec.fit::<2>(), VecX::new([1, 2]));
///
/// let vec = VecX::new([1, 2, 3]);
/// assert_eq!(vec.fit::<5>(), VecX::new([1, 2, 3, 0, 0]));
/// ```
pub fn fit<const M: usize>(&self) -> VecX<T, M>
where T: Default + Copy {
let mut data = [T::default(); M];
(0..N.min(M)).for_each(|i| data[i] = self.data[i]);
VecX { data }
}
/// Apply a function to each element of `VecX<T, N>`.
///
/// `VecX<T, N>`の各要素に関数を適用する。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let do_something = |v:u32| v.abs_diff(1);
///
/// let vec = VecX::new([1, 2, 3]);
///
/// assert_eq!(vec.batch(do_something), VecX::new([0, 1, 2]));
/// ```
pub fn batch<U, F>(self, callback: F) -> VecX<U, N>
where U: Sized + Send,
F: Fn(T) -> U
{
let data = self.data.map(callback);
VecX { data }
}
/// Apply a function to each element of `VecX<T, N>` and `VecX<U, N>`.
///
/// `VecX<T, N>`と`VecX<U, N>`の各要素に関数を適用する。
///
/// # Examples
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new([1, 5, 3]);
/// let vec2 = VecX::new([4, 2, 6]);
///
/// assert_eq!(vec1.batch_with(vec2, |a, b| a.min(b)), VecX::new([1, 2, 3]));
/// ```
pub fn batch_with<U, V, F>(self, other: VecX<U, N>, callback: F) -> VecX<V, N>
where
T: Copy,
U: Copy + Sized + Send,
V: Default + Copy + Sized + Send,
F: Fn(T, U) -> V
{
let mut data = [V::default(); N];
(0..N).for_each(|i| data[i] = callback(self.data[i], other.data[i]));
VecX { data }
}
}
impl<T, const N: usize> Index<usize> for VecX<T, N>
where T: Sized + Send
{
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
&self.data[index]
}
}
impl<T, const N: usize> IndexMut<usize> for VecX<T, N>
where T: Sized + Send
{
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.data[index]
}
}
impl<T, U, const N: usize> Add<VecX<U, N>> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn add(mut self, rhs: VecX<U, N>) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] + rhs.data[i].into());
self
}
}
impl<T, U, const N: usize> Add<U> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn add(mut self, rhs: U) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] + rhs.into());
self
}
}
impl<T, U, const N: usize> Sub<VecX<U, N>> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn sub(mut self, rhs: VecX<U, N>) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] - rhs.data[i].into());
self
}
}
impl<T, U, const N: usize> Sub<U> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn sub(mut self, rhs: U) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] - rhs.into());
self
}
}
impl<T, U, const N: usize> Mul<VecX<U, N>> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn mul(mut self, rhs: VecX<U, N>) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] * rhs.data[i].into());
self
}
}
impl<T, U, const N: usize> Mul<U> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn mul(mut self, rhs: U) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] * rhs.into());
self
}
}
impl<T, U, const N: usize> Div<VecX<U, N>> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn div(mut self, rhs: VecX<U, N>) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] / rhs.data[i].into());
self
}
}
impl<T, U, const N: usize> Div<U> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn div(mut self, rhs: U) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] / rhs.into());
self
}
}
impl<T, U, const N: usize> Rem<VecX<U, N>> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn rem(mut self, rhs: VecX<U, N>) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] % rhs.data[i].into());
self
}
}
impl<T, U, const N: usize> Rem<U> for VecX<T, N>
where T: Num + Copy + Sized + Send,
U: Num + Copy + Into<T> + Sized + Send
{
type Output = Self;
fn rem(mut self, rhs: U) -> Self::Output {
(0..N).for_each(|i| self.data[i] = self.data[i] % rhs.into());
self
}
}
impl<T, U, const N: usize> AddAssign<VecX<U, N>> for VecX<T, N>
where T: Num + AddAssign + Copy + Sized + Send,
U: Num + AddAssign + Copy + Into<T> + Sized + Send
{
fn add_assign(&mut self, rhs: VecX<U, N>) {
(0..N).for_each(|i| self.data[i] += rhs.data[i].into());
}
}
impl<T, U, const N: usize> AddAssign<U> for VecX<T, N>
where T: Num + AddAssign + Copy + Sized + Send,
U: Num + AddAssign + Copy + Into<T> + Sized + Send
{
fn add_assign(&mut self, rhs: U) {
(0..N).for_each(|i| self.data[i] += rhs.into());
}
}
impl<T, U, const N: usize> SubAssign<VecX<U, N>> for VecX<T, N>
where T: Num + SubAssign + Copy + Sized + Send,
U: Num + SubAssign + Copy + Into<T> + Sized + Send
{
fn sub_assign(&mut self, rhs: VecX<U, N>) {
(0..N).for_each(|i| self.data[i] -= rhs.data[i].into());
}
}
impl<T, U, const N: usize> SubAssign<U> for VecX<T, N>
where T: Num + SubAssign + Copy + Sized + Send,
U: Num + SubAssign + Copy + Into<T> + Sized + Send
{
fn sub_assign(&mut self, rhs: U) {
(0..N).for_each(|i| self.data[i] -= rhs.into());
}
}
impl<T, U, const N: usize> MulAssign<VecX<U, N>> for VecX<T, N>
where T: Num + MulAssign + Copy + Sized + Send,
U: Num + MulAssign + Copy + Into<T> + Sized + Send
{
fn mul_assign(&mut self, rhs: VecX<U, N>) {
(0..N).for_each(|i| self.data[i] *= rhs.data[i].into());
}
}
impl<T, U, const N: usize> MulAssign<U> for VecX<T, N>
where T: Num + MulAssign + Copy + Sized + Send,
U: Num + MulAssign + Copy + Into<T> + Sized + Send
{
fn mul_assign(&mut self, rhs: U) {
(0..N).for_each(|i| self.data[i] *= rhs.into());
}
}
impl<T, U, const N: usize> DivAssign<VecX<U, N>> for VecX<T, N>
where T: Num + DivAssign + Copy + Sized + Send,
U: Num + DivAssign + Copy + Into<T> + Sized + Send
{
fn div_assign(&mut self, rhs: VecX<U, N>) {
(0..N).for_each(|i| self.data[i] /= rhs.data[i].into());
}
}
impl<T, U, const N: usize> DivAssign<U> for VecX<T, N>
where T: Num + DivAssign + Copy + Sized + Send,
U: Num + DivAssign + Copy + Into<T> + Sized + Send
{
fn div_assign(&mut self, rhs: U) {
(0..N).for_each(|i| self.data[i] /= rhs.into());
}
}
impl<T, U, const N: usize> RemAssign<VecX<U, N>> for VecX<T, N>
where T: Num + RemAssign + Copy + Sized + Send,
U: Num + RemAssign + Copy + Into<T> + Sized + Send
{
fn rem_assign(&mut self, rhs: VecX<U, N>) {
(0..N).for_each(|i| self.data[i] %= rhs.data[i].into());
}
}
impl<T, U, const N: usize> RemAssign<U> for VecX<T, N>
where T: Num + RemAssign + Copy + Sized + Send,
U: Num + RemAssign + Copy + Into<T> + Sized + Send
{
fn rem_assign(&mut self, rhs: U) {
(0..N).for_each(|i| self.data[i] %= rhs.into());
}
}