#[non_exhaustive]pub struct GaussianDistribution {
pub mean: f64,
pub variance: f64,
}
Expand description
Represents a Gaussian (Normal) distribution
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.mean: f64
Mean parameter
variance: f64
Variance parameter
Implementations§
Source§impl GaussianDistribution
impl GaussianDistribution
Sourcepub fn new(
mean: f64,
variance: f64,
) -> Result<GaussianDistribution, RegressionError>
pub fn new( mean: f64, variance: f64, ) -> Result<GaussianDistribution, RegressionError>
Constructs a new Gaussian distribution from the provided parameters
§Arguments
mean
- The mean parameter
variance
- The variance parameter
Trait Implementations§
Source§impl Clone for GaussianDistribution
impl Clone for GaussianDistribution
Source§fn clone(&self) -> GaussianDistribution
fn clone(&self) -> GaussianDistribution
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl Debug for GaussianDistribution
impl Debug for GaussianDistribution
Source§impl<'de> Deserialize<'de> for GaussianDistribution
impl<'de> Deserialize<'de> for GaussianDistribution
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl Serialize for GaussianDistribution
impl Serialize for GaussianDistribution
Source§impl VariationalRegression<GaussianDistribution> for VariationalLinearRegression
impl VariationalRegression<GaussianDistribution> for VariationalLinearRegression
Source§fn predict(
&self,
features: &[f64],
) -> Result<GaussianDistribution, RegressionError>
fn predict( &self, features: &[f64], ) -> Result<GaussianDistribution, RegressionError>
Computes the predictive distribution for the provided features Read more
impl Copy for GaussianDistribution
Auto Trait Implementations§
impl Freeze for GaussianDistribution
impl RefUnwindSafe for GaussianDistribution
impl Send for GaussianDistribution
impl Sync for GaussianDistribution
impl Unpin for GaussianDistribution
impl UnwindSafe for GaussianDistribution
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.