1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
//! A derive macro to convert enums into a struct where the variants are members. //! Effectively, its like using a `HashMap<MyEnum, MyData>`, but it generates a hard-coded struct instead //! of a HashMap to reduce overhead. //! //! # Basic Example //! //! Applying the macro to a basic enum (i.e. one without tuple variants or struct variants) like this: //! //! ``` //! use variants_struct::VariantsStruct; //! //! #[derive(VariantsStruct)] //! enum Hello { //! World, //! There //! } //! ``` //! //! would produce the following code: //! //! ``` //! # enum Hello { //! # World, //! # There //! # } //! struct HelloStruct<T> { //! pub world: T, //! pub there: T //! } //! //! impl<T> HelloStruct<T> { //! pub fn new(world: T, there: T) -> HelloStruct<T> { //! HelloStruct { //! world, //! there //! } //! } //! //! pub fn get_unchecked(&self, var: &Hello) -> &T { //! match var { //! &Hello::World => &self.world, //! &Hello::There => &self.there //! } //! } //! //! pub fn get_mut_unchecked(&mut self, var: &Hello) -> &mut T { //! match var { //! &Hello::World => &mut self.world, //! &Hello::There => &mut self.there //! } //! } //! //! pub fn get(&self, var: &Hello) -> Option<&T> { //! match var { //! &Hello::World => Some(&self.world), //! &Hello::There => Some(&self.there) //! } //! } //! //! pub fn get_mut(&mut self, var: &Hello) -> Option<&mut T> { //! match var { //! &Hello::World => Some(&mut self.world), //! &Hello::There => Some(&mut self.there) //! } //! } //! } //! ``` //! //! The members can be accessed either directly (like `hello.world`) or by using the getter methods, like: //! //! ``` //! # use variants_struct::VariantsStruct; //! # #[derive(VariantsStruct)] //! # enum Hello { //! # World, //! # There //! # } //! fn main() { //! let mut hello = HelloStruct::new(2, 3); //! *hello.get_mut_unchecked(&Hello::World) = 5; //! //! assert_eq!(hello.world, 5); //! assert_eq!(hello.world, *hello.get_unchecked(&Hello::World)); //! } //! ``` //! //! The getters can be particularly useful with the [enum-iterator](https://docs.rs/crate/enum-iterator/) crate. For basic enums, //! the checked-getters will always return `Some(...)`, so using `get_unchecked` is recommended, *but this is not the case when the enum contains tuple variants*. //! //! Keep in mind that the enum variants are renamed from CamelCase to snake_case, to be consistent with Rust's naming conventions. //! //! # Visibility //! //! The struct fields are always `pub`, and the struct shares the same visibility as the enum. //! //! # Customizing the struct //! //! ## Renaming //! //! By default, the struct's name is `<OriginalEnumName>Struct`. You can set it to something else with the `struct_name` attribute. For example, this: //! //! ``` //! # use variants_struct::VariantsStruct; //! #[derive(VariantsStruct)] //! #[struct_name = "SomeOtherName"] //! pub enum NotThisName { //! Variant //! } //! ``` //! //! will produce a struct with name `SomeOtherName`. //! //! ## Derives //! //! By default no derives are applied to the generated struct. You can add derive macro invocations with the `struct_derive` attribute. For example, this: //! //! ``` //! # use variants_struct::VariantsStruct; //! use serde::{Serialize, Deserialize}; //! //! #[derive(VariantsStruct)] //! #[struct_derive(Debug, Default, Serialize, Deserialize)] //! enum Hello { //! World, //! There //! } //! ``` //! //! would produce the following code: //! //! ``` //! # use serde::{Serialize, Deserialize}; //! #[derive(Debug, Default, Serialize, Deserialize)] //! struct HelloStruct<T> { //! pub world: T, //! pub there: T //! } //! //! // impl block omitted //! ``` //! //! ## Trait Bounds //! //! By default the struct's type argument `T` has no trait bounds, but you can add them with the `struct_bounds` attribute. For example, this: //! //! ``` //! # use variants_struct::VariantsStruct; //! #[derive(VariantsStruct)] //! #[struct_bounds(Clone)] //! enum Hello { //! World, //! There //! } //! ``` //! //! would produce the following code: //! //! ``` //! struct HelloStruct<T: Clone> { //! # go_away: T, //! // fields omitted //! } //! //! impl<T: Clone> HelloStruct<T> { //! // methods omitted //! } //! ``` //! //! ## Combinations //! //! Note that many derives don't require that the type argument `T` fulfills any trait bounds. For example, applying the `Clone` //! derive to the struct only makes the struct cloneable if `T` is cloneable, and still allows un-cloneable types to be used with the struct. //! //! So if you want the struct to *always* be cloneable, you have to use both the derive and the trait bound: //! //! ``` //! # use variants_struct::VariantsStruct; //! #[derive(VariantsStruct)] //! #[struct_derive(Clone)] //! #[struct_bounds(Clone)] //! enum Hello { //! // variants omitted //! } //! ``` //! //! These three attributes can be used in any order, or even multiple times (although that wouldn't be very readable). //! //! # Tuple Variants //! //! Tuple variants are turned into a `HashMap`, where the data stored in the tuple is the key (so the data must implement `Hash`). //! Unfortunately, variants with more than one value in them are not supported. //! //! Tuple variants are omitted from the struct's `new` function. For example, this: //! //! ``` //! # use variants_struct::VariantsStruct; //! #[derive(VariantsStruct)] //! enum Hello { //! World, //! There(i32) //! } //! ``` //! //! produces the following code: //! //! ``` //! # enum Hello { //! # World, //! # There(i32) //! # } //! struct HelloStruct<T> { //! pub world: T, //! pub there: std::collections::HashMap<i32, T> //! } //! //! impl<T> HelloStruct<T> { //! fn new(world: T) -> HelloStruct<T> { //! HelloStruct { //! world, //! there: std::collections::HashMap::new() //! } //! } //! //! pub fn get_unchecked(&self, var: &Hello) -> &T { //! match var { //! &Hello::World => &self.world, //! &Hello::There(key) => self.there.get(&key) //! .expect("tuple variant key not found in hashmap") //! } //! } //! //! pub fn get_mut_unchecked(&mut self, var: &Hello) -> &mut T { //! match var { //! &Hello::World => &mut self.world, //! &Hello::There(key) => self.there.get_mut(&key) //! .expect("tuple variant key not found in hashmap") //! } //! } //! //! pub fn get(&self, var: &Hello) -> Option<&T> { //! match var { //! &Hello::World => Some(&self.world), //! &Hello::There(key) => self.there.get(&key) //! } //! } //! //! pub fn get_mut(&mut self, var: &Hello) -> Option<&mut T> { //! match var { //! &Hello::World => Some(&mut self.world), //! &Hello::There(key) => self.there.get_mut(&key) //! } //! } //! } //! ``` //! //! Notice that the `new` function now only takes the `world` argument, and the unchecked getter methods query the hashmap and unwrap the result. use proc_macro::TokenStream; use syn::{Ident, parse_macro_input, ItemEnum, Fields}; use quote::{quote, format_ident}; use inflector::Inflector; use proc_macro_error::{proc_macro_error, emit_error}; /// Stores basic information about variants. struct VariantInfo { normal: Ident, snake: Ident, fields: Fields } /// Derives the variants struct and impl. #[proc_macro_error] #[proc_macro_derive(VariantsStruct, attributes(struct_bounds, struct_derive, struct_name))] pub fn variants_struct(input: TokenStream) -> TokenStream { let input = parse_macro_input!(input as ItemEnum); let enum_ident = input.ident.clone(); let mut struct_ident = format_ident!("{}Struct", input.ident); let visibility = input.vis.clone(); // read the `struct_bounds`, `struct_derive`, and `struct_name` attributes. (ignore any others) let mut bounds = vec![]; let mut derives = vec![]; for attr in input.clone().attrs { match attr.parse_meta() { Ok(syn::Meta::List(syn::MetaList {path, nested, ..})) => { if let Some(ident) = path.get_ident() { let attr_name = ident.to_string(); if attr_name == "struct_bounds" || attr_name == "struct_derive" { let mut paths = vec![]; for meta in nested { match meta { syn::NestedMeta::Meta(syn::Meta::Path(path)) => { paths.push(path.clone()); } _ => emit_error!(path, "only path arguments are accepted") } } if attr_name == "struct_bounds" { bounds.extend(paths); } else { derives.extend(paths); } } } } Ok(syn::Meta::NameValue(syn::MetaNameValue {path, lit, ..})) => { if let Some(ident) = path.get_ident() { let attr_name = ident.to_string(); if attr_name == "struct_name" { if let syn::Lit::Str(lit_str) = lit { struct_ident = format_ident!("{}", lit_str.value()); } } } } _ => {} } } if input.variants.len() == 0 { return (quote! { #[derive(#(#derives),*)] #visibility struct #struct_ident; }).into() } let vars: Vec<_> = input.clone().variants.iter().map( |var| VariantInfo { normal: var.ident.clone(), snake: format_ident!("{}", var.ident.to_string().to_snake_case()), fields: var.fields.clone() } ).collect(); // generate the fields and impl code let mut field_idents = vec![]; let mut field_names = vec![]; let mut struct_fields = vec![]; let mut get_uncheckeds = vec![]; let mut get_mut_uncheckeds = vec![]; let mut gets = vec![]; let mut get_muts = vec![]; let mut new_args = vec![]; let mut new_fields = vec![]; for VariantInfo { normal, snake, fields } in &vars { field_idents.push(snake.clone()); field_names.push(snake.to_string()); match fields { Fields::Unit => { struct_fields.push(quote! { pub #snake: T }); gets.push(quote! { &#enum_ident::#normal => Some(&self.#snake) }); get_muts.push(quote! { &#enum_ident::#normal => Some(&mut self.#snake) }); get_uncheckeds.push(quote! { &#enum_ident::#normal => &self.#snake }); get_mut_uncheckeds.push(quote! { &#enum_ident::#normal => &mut self.#snake }); new_args.push(quote! {#snake: T}); new_fields.push(quote! {#snake}); } Fields::Unnamed(syn::FieldsUnnamed { unnamed, .. }) => { if unnamed.len() == 1 { let ty = unnamed.first().unwrap().clone().ty; struct_fields.push(quote! { pub #snake: std::collections::HashMap<#ty, T> }); gets.push(quote! { &#enum_ident::#normal(key) => self.#snake.get(&key) }); get_muts.push(quote! { &#enum_ident::#normal(key) => self.#snake.get_mut(&key) }); get_uncheckeds.push(quote! { &#enum_ident::#normal(key) => self.#snake.get(&key) .expect("tuple variant key not found in hashmap") }); get_mut_uncheckeds.push(quote! { &#enum_ident::#normal(key) => self.#snake.get_mut(&key) .expect("tuple variant key not found in hashmap") }); new_fields.push(quote! {#snake: std::collections::HashMap::new()}); } else { emit_error!(unnamed, "only tuple variants with exactly one value are allowed"); } } _ => {} } } // combine it all together (quote! { #[derive(#(#derives),*)] #visibility struct #struct_ident<T: #(#bounds)+*> { #(#struct_fields),* } impl<T: #(#bounds)+*> #struct_ident<T> { pub fn new(#(#new_args),*) -> #struct_ident<T> { #struct_ident { #(#new_fields),* } } pub fn get_unchecked(&self, var: &#enum_ident) -> &T { match var { #(#get_uncheckeds),* } } pub fn get_mut_unchecked(&mut self, var: &#enum_ident) -> &mut T { match var { #(#get_mut_uncheckeds),* } } pub fn get(&self, var: &#enum_ident) -> Option<&T> { match var { #(#gets),* } } pub fn get_mut(&mut self, var: &#enum_ident) -> Option<&mut T> { match var { #(#get_muts),* } } } }).into() }