1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
//! A derive macro to convert enums into a struct where the variants are members.
//! Effectively, its like using a `HashMap<MyEnum, MyData>`, but it generates a hard-coded struct instead
//! of a HashMap to reduce overhead.
//!
//! # Basic Example
//!
//! Applying the macro to a basic enum (i.e. one without tuple variants or struct variants) like this:
//!
//! ```
//! use variants_struct::VariantsStruct;
//!
//! #[derive(VariantsStruct)]
//! enum Hello {
//!     World,
//!     There
//! }
//! ```
//!
//! would produce the following code:
//!
//! ```
//! # enum Hello {
//! #     World,
//! #     There
//! # }
//! struct HelloStruct<T> {
//!     pub world: T,
//!     pub there: T
//! }
//!
//! impl<T> HelloStruct<T> {
//!     pub fn new(world: T, there: T) -> HelloStruct<T> {
//!         HelloStruct {
//!             world,
//!             there
//!         }
//!     }
//!
//!     pub fn get_unchecked(&self, var: &Hello) -> &T {
//!         match var {
//!             &Hello::World => &self.world,
//!             &Hello::There => &self.there
//!         }
//!     }
//!
//!     pub fn get_mut_unchecked(&mut self, var: &Hello) -> &mut T {
//!         match var {
//!             &Hello::World => &mut self.world,
//!             &Hello::There => &mut self.there
//!         }
//!     }
//!
//!     pub fn get(&self, var: &Hello) -> Option<&T> {
//!         match var {
//!             &Hello::World => Some(&self.world),
//!             &Hello::There => Some(&self.there)
//!         }
//!     }
//!
//!     pub fn get_mut(&mut self, var: &Hello) -> Option<&mut T> {
//!         match var {
//!             &Hello::World => Some(&mut self.world),
//!             &Hello::There => Some(&mut self.there)
//!         }
//!     }
//! }
//! ```
//!
//! The members can be accessed either directly (like `hello.world`) or by using the getter methods, like:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! # #[derive(VariantsStruct)]
//! # enum Hello {
//! #     World,
//! #     There
//! # }
//! let mut hello = HelloStruct::new(2, 3);
//! *hello.get_mut_unchecked(&Hello::World) = 5;
//!
//! assert_eq!(hello.world, 5);
//! assert_eq!(hello.world, *hello.get_unchecked(&Hello::World));
//! ```
//!
//! The getters can be particularly useful with the [enum-iterator](https://docs.rs/crate/enum-iterator/) crate. For basic enums,
//! the checked-getters will always return `Some(...)`, so using `get_unchecked` is recommended, *but this is not the case when the enum contains tuple variants*.
//!
//! Keep in mind that the enum variants are renamed from CamelCase to snake_case, to be consistent with Rust's naming conventions.
//!
//! # Visibility
//!
//! The struct fields are always `pub`, and the struct shares the same visibility as the enum.
//!
//! # Customizing the struct
//!
//! ## Renaming
//!
//! By default, the struct's name is `<OriginalEnumName>Struct`. You can set it to something else with the `struct_name` attribute. For example, this:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! #[derive(VariantsStruct)]
//! #[struct_name = "SomeOtherName"]
//! enum NotThisName {
//!     Variant
//! }
//! ```
//!
//! will produce a struct with name `SomeOtherName`.
//!
//! You can also rename the individual fields manually with the `field_name` attribute. For example, this:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! #[derive(VariantsStruct)]
//! enum ChangeMyVariantName {
//!     #[field_name = "this_name"] NotThisName
//! }
//! ```
//!
//! Will produce the following struct:
//!
//! ```
//! struct ChangeMyVariantName<T> {
//!     this_name: T
//! }
//! ```
//!
//! ## Derives
//!
//! By default no derives are applied to the generated struct. You can add derive macro invocations with the `struct_derive` attribute. For example, this:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! use serde::{Serialize, Deserialize};
//!
//! #[derive(VariantsStruct)]
//! #[struct_derive(Debug, Default, Serialize, Deserialize)]
//! enum Hello {
//!     World,
//!     There
//! }
//! ```
//!
//! would produce the following code:
//!
//! ```
//! # use serde::{Serialize, Deserialize};
//! #[derive(Debug, Default, Serialize, Deserialize)]
//! struct HelloStruct<T> {
//!     pub world: T,
//!     pub there: T
//! }
//!
//! // impl block omitted
//! ```
//!
//! ## Trait Bounds
//!
//! By default the struct's type argument `T` has no trait bounds, but you can add them with the `struct_bounds` attribute. For example, this:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! #[derive(VariantsStruct)]
//! #[struct_bounds(Clone)]
//! enum Hello {
//!     World,
//!     There
//! }
//! ```
//!
//! would produce the following code:
//!
//! ```
//! struct HelloStruct<T: Clone> {
//!     # go_away: T,
//!     // fields omitted
//! }
//!
//! impl<T: Clone> HelloStruct<T> {
//!     // methods omitted
//! }
//! ```
//!
//! ## Combinations
//!
//! Note that many derives don't require that the type argument `T` fulfills any trait bounds. For example, applying the `Clone`
//! derive to the struct only makes the struct cloneable if `T` is cloneable, and still allows un-cloneable types to be used with the struct.
//!
//! So if you want the struct to *always* be cloneable, you have to use both the derive and the trait bound:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! #[derive(VariantsStruct)]
//! #[struct_derive(Clone)]
//! #[struct_bounds(Clone)]
//! enum Hello {
//!     // variants omitted
//! }
//! ```
//!
//! These two attributes, and the `struct_name` attribute, can be used in any order, or even multiple times (although that wouldn't be very readable).
//!
//! # Tuple and Struct Variants
//!
//! Tuple variants are turned into a `HashMap`, where the data stored in the tuple is the key (so the data must implement `Hash`).
//! Unfortunately, variants with more than one field in them are not supported.
//!
//! Tuple variants are omitted from the struct's `new` function. For example, this:
//!
//! ```
//! # use variants_struct::VariantsStruct;
//! #[derive(VariantsStruct)]
//! enum Hello {
//!     World,
//!     There(i32)
//! }
//! ```
//!
//! produces the following code:
//!
//! ```
//! # enum Hello {
//! #     World,
//! #     There(i32)
//! # }
//! struct HelloStruct<T> {
//!     pub world: T,
//!     pub there: std::collections::HashMap<i32, T>
//! }
//!
//! impl<T> HelloStruct<T> {
//!     fn new(world: T) -> HelloStruct<T> {
//!         HelloStruct {
//!             world,
//!             there: std::collections::HashMap::new()
//!         }
//!     }
//!
//!     pub fn get_unchecked(&self, var: &Hello) -> &T {
//!         match var {
//!             &Hello::World => &self.world,
//!             &Hello::There(key) => self.there.get(&key)
//!                 .expect("tuple variant key not found in hashmap")
//!         }
//!     }
//!
//!     pub fn get_mut_unchecked(&mut self, var: &Hello) -> &mut T {
//!         match var {
//!             &Hello::World => &mut self.world,
//!             &Hello::There(key) => self.there.get_mut(&key)
//!                 .expect("tuple variant key not found in hashmap")
//!         }
//!     }
//!
//!     pub fn get(&self, var: &Hello) -> Option<&T> {
//!         match var {
//!             &Hello::World => Some(&self.world),
//!             &Hello::There(key) => self.there.get(&key)
//!         }
//!     }
//!
//!     pub fn get_mut(&mut self, var: &Hello) -> Option<&mut T> {
//!         match var {
//!             &Hello::World => Some(&mut self.world),
//!             &Hello::There(key) => self.there.get_mut(&key)
//!         }
//!     }
//! }
//! ```
//!
//! Notice that the `new` function now only takes the `world` argument, and the unchecked getter methods query the hashmap and unwrap the result.
//!
//! The same can also be done in struct variants that have only one field.

use proc_macro::TokenStream;
use syn::{Ident, parse_macro_input, ItemEnum, Fields};
use quote::{quote, format_ident};
use inflector::Inflector;
use proc_macro_error::{proc_macro_error, emit_error, abort};
use check_keyword::CheckKeyword;

/// Stores basic information about variants.
struct VariantInfo {
    normal: Ident,
    snake: Ident,
    fields: Fields
}

/// Derives the variants struct and impl.
#[proc_macro_error]
#[proc_macro_derive(VariantsStruct, attributes(struct_bounds, struct_derive, struct_name, field_name))]
pub fn variants_struct(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as ItemEnum);
    let enum_ident = input.ident.clone();
    let mut struct_ident = format_ident!("{}Struct", input.ident);
    let visibility = input.vis.clone();

    // read the `struct_bounds`, `struct_derive`, and `struct_name` attributes. (ignore any others)
    let mut bounds = vec![];
    let mut derives = vec![];
    for attr in input.clone().attrs {
        match attr.parse_meta() {
            Ok(syn::Meta::List(syn::MetaList {path, nested, ..})) => {
                if let Some(ident) = path.get_ident() {
                    let attr_name = ident.to_string();
                    if attr_name == "struct_bounds" || attr_name == "struct_derive" {
                        let mut paths = vec![];
                        for meta in nested {
                            match meta {
                                syn::NestedMeta::Meta(syn::Meta::Path(path)) => {
                                    paths.push(path.clone());
                                }
                                _ => emit_error!(path, "only path arguments are accepted")
                            }
                        }
                        if attr_name == "struct_bounds" {
                            bounds.extend(paths);
                        } else {
                            derives.extend(paths);
                        }
                    }
                }
            }
            Ok(syn::Meta::NameValue(syn::MetaNameValue {path, lit, ..})) => {
                if let Some(ident) = path.get_ident() {
                    let attr_name = ident.to_string();
                    if attr_name == "struct_name" {
                        if let syn::Lit::Str(lit_str) = lit {
                            struct_ident = format_ident!("{}", lit_str.value());
                        } else {
                            emit_error!(lit, "must be a str literal");
                        }
                    }
                }
            }
            _ => {}
        }
    }

    if input.variants.len() == 0 {
        return (quote! {
            #[derive(#(#derives),*)]
            #visibility struct #struct_ident;
        }).into()
    }

    let vars: Vec<_> = input.clone().variants.iter().map(
        |var| {
            let snake = {
                let names: Vec<_> = var.attrs.iter().filter_map(
                    |attr| {
                        match attr.parse_meta() {
                            Ok(syn::Meta::NameValue(syn::MetaNameValue {path, lit, ..})) => {
                                if let Some(ident) = path.get_ident() {
                                    if ident.to_string() == "field_name" {
                                        if let syn::Lit::Str(lit_str) = lit {
                                            Some(lit_str.value())
                                        } else {
                                            abort!(lit, "must be a string literal");
                                        }
                                    } else {
                                        None
                                    }
                                } else {
                                    None
                                }
                            }
                            _ => None
                        }
                    }
                ).collect();
                if names.is_empty() {
                    let name = var.ident.to_string().to_snake_case();
                    format_ident!("{}", name.into_safe())
                } else {
                    format_ident!("{}", names.first().unwrap().to_safe())
                }
            };
            VariantInfo {
                normal: var.ident.clone(),
                snake,
                fields: var.fields.clone()
            }
        }
    ).collect();

    // generate the fields and impl code
    let mut field_idents = vec![];
    let mut field_names = vec![];
    let mut struct_fields = vec![];
    let mut get_uncheckeds = vec![];
    let mut get_mut_uncheckeds = vec![];
    let mut gets = vec![];
    let mut get_muts = vec![];
    let mut new_args = vec![];
    let mut new_fields = vec![];
    for VariantInfo { normal, snake, fields } in &vars {
        field_idents.push(snake.clone());
        field_names.push(snake.to_string());
        match fields {
            Fields::Unit => {
                struct_fields.push(quote! { pub #snake: T });
                gets.push(quote! { &#enum_ident::#normal => Some(&self.#snake) });
                get_muts.push(quote! { &#enum_ident::#normal => Some(&mut self.#snake) });
                get_uncheckeds.push(quote! { &#enum_ident::#normal => &self.#snake });
                get_mut_uncheckeds.push(quote! { &#enum_ident::#normal => &mut self.#snake });
                new_args.push(quote! {#snake: T});
                new_fields.push(quote! {#snake});
            }
            Fields::Unnamed(syn::FieldsUnnamed { unnamed, .. }) => {
                if unnamed.len() == 1 {
                    let ty = unnamed.first().unwrap().clone().ty;
                    struct_fields.push(quote! {
                        pub #snake: std::collections::HashMap<#ty, T>
                    });
                    gets.push(quote! {
                        &#enum_ident::#normal(key) => self.#snake.get(&key)
                    });
                    get_muts.push(quote! {
                        &#enum_ident::#normal(key) => self.#snake.get_mut(&key)
                    });
                    get_uncheckeds.push(quote! {
                        &#enum_ident::#normal(key) => self.#snake.get(&key)
                            .expect("tuple variant key not found in hashmap")
                    });
                    get_mut_uncheckeds.push(quote! {
                        &#enum_ident::#normal(key) => self.#snake.get_mut(&key)
                            .expect("tuple variant key not found in hashmap")
                    });
                    new_fields.push(quote! {#snake: std::collections::HashMap::new()});
                } else {
                    emit_error!(unnamed, "only tuples with one value are allowed");
                }
            }
            Fields::Named(syn::FieldsNamed { named, .. }) => {
                if named.len() == 1 {
                    let ty = named.first().unwrap().clone().ty;
                    let ident = named.first().unwrap().ident.clone().unwrap();
                    struct_fields.push(quote! {
                        pub #snake: std::collections::HashMap<#ty, T>
                    });
                    gets.push(quote! {
                        &#enum_ident::#normal {#ident}  => self.#snake.get(&#ident)
                    });
                    get_muts.push(quote! {
                        &#enum_ident::#normal {#ident}  => self.#snake.get_mut(&#ident)
                    });
                    get_uncheckeds.push(quote! {
                        &#enum_ident::#normal {#ident} => self.#snake.get(&#ident)
                            .expect("tuple variant key not found in hashmap")
                    });
                    get_mut_uncheckeds.push(quote! {
                        &#enum_ident::#normal {#ident} => self.#snake.get_mut(&#ident)
                            .expect("tuple variant key not found in hashmap")
                    });
                    new_fields.push(quote! {#snake: std::collections::HashMap::new()});
                } else {
                    emit_error!(named, "only structs with one field are allowed");
                }
            }
        }
    }

    // combine it all together
    (quote! {
        #[derive(#(#derives),*)]
        #visibility struct #struct_ident<T: #(#bounds)+*> {
            #(#struct_fields),*
        }

        impl<T: #(#bounds)+*> #struct_ident<T> {
            pub fn new(#(#new_args),*) -> #struct_ident<T> {
                #struct_ident {
                    #(#new_fields),*
                }
            }

            pub fn get_unchecked(&self, var: &#enum_ident) -> &T {
                match var {
                    #(#get_uncheckeds),*
                }
            }

            pub fn get_mut_unchecked(&mut self, var: &#enum_ident) -> &mut T {
                match var {
                    #(#get_mut_uncheckeds),*
                }
            }

            pub fn get(&self, var: &#enum_ident) -> Option<&T> {
                match var {
                    #(#gets),*
                }
            }

            pub fn get_mut(&mut self, var: &#enum_ident) -> Option<&mut T> {
                match var {
                    #(#get_muts),*
                }
            }
        }
    }).into()
}