pub struct Date { /* private fields */ }
Expand description

Date in the proleptic Gregorian calendar.

By default, years between ±9999 inclusive are representable. This can be expanded to ±999,999 inclusive by enabling the large-dates crate feature. Doing so has performance implications and introduces some ambiguities when parsing.

Implementations

The minimum valid Date.

The value of this may vary depending on the feature flags enabled.

The maximum valid Date.

The value of this may vary depending on the feature flags enabled.

Attempt to create a Date from the year, month, and day.

assert!(Date::from_calendar_date(2019, Month::January, 1).is_ok());
assert!(Date::from_calendar_date(2019, Month::December, 31).is_ok());
assert!(Date::from_calendar_date(2019, Month::February, 29).is_err()); // 2019 isn't a leap year.

Attempt to create a Date from the year and ordinal day number.

assert!(Date::from_ordinal_date(2019, 1).is_ok());
assert!(Date::from_ordinal_date(2019, 365).is_ok());
assert!(Date::from_ordinal_date(2019, 366).is_err()); // 2019 isn't a leap year.

Attempt to create a Date from the ISO year, week, and weekday.

assert!(Date::from_iso_week_date(2019, 1, Monday).is_ok());
assert!(Date::from_iso_week_date(2019, 1, Tuesday).is_ok());
assert!(Date::from_iso_week_date(2020, 53, Friday).is_ok());
assert!(Date::from_iso_week_date(2019, 53, Monday).is_err()); // 2019 doesn't have 53 weeks.

Create a Date from the Julian day.

The algorithm to perform this conversion is derived from one provided by Peter Baum; it is freely available here.

assert_eq!(Date::from_julian_day(0), Ok(date!(-4713 - 11 - 24)));
assert_eq!(Date::from_julian_day(2_451_545), Ok(date!(2000 - 01 - 01)));
assert_eq!(Date::from_julian_day(2_458_485), Ok(date!(2019 - 01 - 01)));
assert_eq!(Date::from_julian_day(2_458_849), Ok(date!(2019 - 12 - 31)));

Get the year of the date.

assert_eq!(date!(2019 - 01 - 01).year(), 2019);
assert_eq!(date!(2019 - 12 - 31).year(), 2019);
assert_eq!(date!(2020 - 01 - 01).year(), 2020);

Get the month.

assert_eq!(date!(2019 - 01 - 01).month(), Month::January);
assert_eq!(date!(2019 - 12 - 31).month(), Month::December);

Get the day of the month.

The returned value will always be in the range 1..=31.

assert_eq!(date!(2019 - 01 - 01).day(), 1);
assert_eq!(date!(2019 - 12 - 31).day(), 31);

Get the day of the year.

The returned value will always be in the range 1..=366 (1..=365 for common years).

assert_eq!(date!(2019 - 01 - 01).ordinal(), 1);
assert_eq!(date!(2019 - 12 - 31).ordinal(), 365);

Get the ISO week number.

The returned value will always be in the range 1..=53.

assert_eq!(date!(2019 - 01 - 01).iso_week(), 1);
assert_eq!(date!(2019 - 10 - 04).iso_week(), 40);
assert_eq!(date!(2020 - 01 - 01).iso_week(), 1);
assert_eq!(date!(2020 - 12 - 31).iso_week(), 53);
assert_eq!(date!(2021 - 01 - 01).iso_week(), 53);

Get the week number where week 1 begins on the first Sunday.

The returned value will always be in the range 0..=53.

assert_eq!(date!(2019 - 01 - 01).sunday_based_week(), 0);
assert_eq!(date!(2020 - 01 - 01).sunday_based_week(), 0);
assert_eq!(date!(2020 - 12 - 31).sunday_based_week(), 52);
assert_eq!(date!(2021 - 01 - 01).sunday_based_week(), 0);

Get the week number where week 1 begins on the first Monday.

The returned value will always be in the range 0..=53.

assert_eq!(date!(2019 - 01 - 01).monday_based_week(), 0);
assert_eq!(date!(2020 - 01 - 01).monday_based_week(), 0);
assert_eq!(date!(2020 - 12 - 31).monday_based_week(), 52);
assert_eq!(date!(2021 - 01 - 01).monday_based_week(), 0);

Get the year, month, and day.

assert_eq!(
    date!(2019 - 01 - 01).to_calendar_date(),
    (2019, Month::January, 1)
);

Get the year and ordinal day number.

assert_eq!(date!(2019 - 01 - 01).to_ordinal_date(), (2019, 1));

Get the ISO 8601 year, week number, and weekday.

assert_eq!(date!(2019 - 01 - 01).to_iso_week_date(), (2019, 1, Tuesday));
assert_eq!(date!(2019 - 10 - 04).to_iso_week_date(), (2019, 40, Friday));
assert_eq!(
    date!(2020 - 01 - 01).to_iso_week_date(),
    (2020, 1, Wednesday)
);
assert_eq!(
    date!(2020 - 12 - 31).to_iso_week_date(),
    (2020, 53, Thursday)
);
assert_eq!(date!(2021 - 01 - 01).to_iso_week_date(), (2020, 53, Friday));

Get the weekday.

assert_eq!(date!(2019 - 01 - 01).weekday(), Tuesday);
assert_eq!(date!(2019 - 02 - 01).weekday(), Friday);
assert_eq!(date!(2019 - 03 - 01).weekday(), Friday);
assert_eq!(date!(2019 - 04 - 01).weekday(), Monday);
assert_eq!(date!(2019 - 05 - 01).weekday(), Wednesday);
assert_eq!(date!(2019 - 06 - 01).weekday(), Saturday);
assert_eq!(date!(2019 - 07 - 01).weekday(), Monday);
assert_eq!(date!(2019 - 08 - 01).weekday(), Thursday);
assert_eq!(date!(2019 - 09 - 01).weekday(), Sunday);
assert_eq!(date!(2019 - 10 - 01).weekday(), Tuesday);
assert_eq!(date!(2019 - 11 - 01).weekday(), Friday);
assert_eq!(date!(2019 - 12 - 01).weekday(), Sunday);

Get the next calendar date.

assert_eq!(
    date!(2019 - 01 - 01).next_day(),
    Some(date!(2019 - 01 - 02))
);
assert_eq!(
    date!(2019 - 01 - 31).next_day(),
    Some(date!(2019 - 02 - 01))
);
assert_eq!(
    date!(2019 - 12 - 31).next_day(),
    Some(date!(2020 - 01 - 01))
);
assert_eq!(Date::MAX.next_day(), None);

Get the previous calendar date.

assert_eq!(
    date!(2019 - 01 - 02).previous_day(),
    Some(date!(2019 - 01 - 01))
);
assert_eq!(
    date!(2019 - 02 - 01).previous_day(),
    Some(date!(2019 - 01 - 31))
);
assert_eq!(
    date!(2020 - 01 - 01).previous_day(),
    Some(date!(2019 - 12 - 31))
);
assert_eq!(Date::MIN.previous_day(), None);

Get the Julian day for the date.

The algorithm to perform this conversion is derived from one provided by Peter Baum; it is freely available here.

assert_eq!(date!(-4713 - 11 - 24).to_julian_day(), 0);
assert_eq!(date!(2000 - 01 - 01).to_julian_day(), 2_451_545);
assert_eq!(date!(2019 - 01 - 01).to_julian_day(), 2_458_485);
assert_eq!(date!(2019 - 12 - 31).to_julian_day(), 2_458_849);

Computes self + duration, returning None if an overflow occurred.

assert_eq!(Date::MAX.checked_add(1.days()), None);
assert_eq!(Date::MIN.checked_add((-2).days()), None);
assert_eq!(
    date!(2020 - 12 - 31).checked_add(2.days()),
    Some(date!(2021 - 01 - 02))
);
Note

This function only takes whole days into account.

assert_eq!(Date::MAX.checked_add(23.hours()), Some(Date::MAX));
assert_eq!(Date::MIN.checked_add((-23).hours()), Some(Date::MIN));
assert_eq!(
    date!(2020 - 12 - 31).checked_add(23.hours()),
    Some(date!(2020 - 12 - 31))
);
assert_eq!(
    date!(2020 - 12 - 31).checked_add(47.hours()),
    Some(date!(2021 - 01 - 01))
);

Computes self - duration, returning None if an overflow occurred.

assert_eq!(Date::MAX.checked_sub((-2).days()), None);
assert_eq!(Date::MIN.checked_sub(1.days()), None);
assert_eq!(
    date!(2020 - 12 - 31).checked_sub(2.days()),
    Some(date!(2020 - 12 - 29))
);
Note

This function only takes whole days into account.

assert_eq!(Date::MAX.checked_sub((-23).hours()), Some(Date::MAX));
assert_eq!(Date::MIN.checked_sub(23.hours()), Some(Date::MIN));
assert_eq!(
    date!(2020 - 12 - 31).checked_sub(23.hours()),
    Some(date!(2020 - 12 - 31))
);
assert_eq!(
    date!(2020 - 12 - 31).checked_sub(47.hours()),
    Some(date!(2020 - 12 - 30))
);

Computes self + duration, saturating value on overflow.

assert_eq!(Date::MAX.saturating_add(1.days()), Date::MAX);
assert_eq!(Date::MIN.saturating_add((-2).days()), Date::MIN);
assert_eq!(
    date!(2020 - 12 - 31).saturating_add(2.days()),
    date!(2021 - 01 - 02)
);
Note

This function only takes whole days into account.

assert_eq!(
    date!(2020 - 12 - 31).saturating_add(23.hours()),
    date!(2020 - 12 - 31)
);
assert_eq!(
    date!(2020 - 12 - 31).saturating_add(47.hours()),
    date!(2021 - 01 - 01)
);

Computes self - duration, saturating value on overflow.

assert_eq!(Date::MAX.saturating_sub((-2).days()), Date::MAX);
assert_eq!(Date::MIN.saturating_sub(1.days()), Date::MIN);
assert_eq!(
    date!(2020 - 12 - 31).saturating_sub(2.days()),
    date!(2020 - 12 - 29)
);
Note

This function only takes whole days into account.

assert_eq!(
    date!(2020 - 12 - 31).saturating_sub(23.hours()),
    date!(2020 - 12 - 31)
);
assert_eq!(
    date!(2020 - 12 - 31).saturating_sub(47.hours()),
    date!(2020 - 12 - 30)
);

Replace the year. The month and day will be unchanged.

assert_eq!(
    date!(2022 - 02 - 18).replace_year(2019),
    Ok(date!(2019 - 02 - 18))
);
assert!(date!(2022 - 02 - 18).replace_year(-1_000_000_000).is_err()); // -1_000_000_000 isn't a valid year
assert!(date!(2022 - 02 - 18).replace_year(1_000_000_000).is_err()); // 1_000_000_000 isn't a valid year

Replace the month of the year.

assert_eq!(
    date!(2022 - 02 - 18).replace_month(Month::January),
    Ok(date!(2022 - 01 - 18))
);
assert!(
    date!(2022 - 01 - 30)
        .replace_month(Month::February)
        .is_err()
); // 30 isn't a valid day in February

Replace the day of the month.

assert_eq!(
    date!(2022 - 02 - 18).replace_day(1),
    Ok(date!(2022 - 02 - 01))
);
assert!(date!(2022 - 02 - 18).replace_day(0).is_err()); // 0 isn't a valid day
assert!(date!(2022 - 02 - 18).replace_day(30).is_err()); // 30 isn't a valid day in February

Methods to add a Time component, resulting in a PrimitiveDateTime.

Create a PrimitiveDateTime using the existing date. The Time component will be set to midnight.

assert_eq!(date!(1970-01-01).midnight(), datetime!(1970-01-01 0:00));

Create a PrimitiveDateTime using the existing date and the provided Time.

assert_eq!(
    date!(1970-01-01).with_time(time!(0:00)),
    datetime!(1970-01-01 0:00),
);

Attempt to create a PrimitiveDateTime using the existing date and the provided time.

assert!(date!(1970 - 01 - 01).with_hms(0, 0, 0).is_ok());
assert!(date!(1970 - 01 - 01).with_hms(24, 0, 0).is_err());

Attempt to create a PrimitiveDateTime using the existing date and the provided time.

assert!(date!(1970 - 01 - 01).with_hms_milli(0, 0, 0, 0).is_ok());
assert!(date!(1970 - 01 - 01).with_hms_milli(24, 0, 0, 0).is_err());

Attempt to create a PrimitiveDateTime using the existing date and the provided time.

assert!(date!(1970 - 01 - 01).with_hms_micro(0, 0, 0, 0).is_ok());
assert!(date!(1970 - 01 - 01).with_hms_micro(24, 0, 0, 0).is_err());

Attempt to create a PrimitiveDateTime using the existing date and the provided time.

assert!(date!(1970 - 01 - 01).with_hms_nano(0, 0, 0, 0).is_ok());
assert!(date!(1970 - 01 - 01).with_hms_nano(24, 0, 0, 0).is_err());

Format the Date using the provided format description.

Format the Date using the provided format description.

let format = format_description::parse("[year]-[month]-[day]")?;
assert_eq!(date!(2020 - 01 - 02).format(&format)?, "2020-01-02");

Parse a Date from the input using the provided format description.

let format = format_description::parse("[year]-[month]-[day]")?;
assert_eq!(Date::parse("2020-01-02", &format)?, date!(2020 - 01 - 02));

Trait Implementations

The resulting type after applying the + operator.

Performs the + operation. Read more

The resulting type after applying the + operator.

Performs the + operation. Read more

Performs the += operation. Read more

Performs the += operation. Read more

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Formats the value using the given formatter. Read more

Will panic if could not convert v to Self.

Will return Err(Error::FromValueError(v)) if could not convert v to Self.

Will return Err(Error::FromValueError(v)) if v is not convertible to Self.

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

The resulting type after applying the - operator.

Performs the - operation. Read more

The resulting type after applying the - operator.

Performs the - operation. Read more

The resulting type after applying the - operator.

Performs the - operation. Read more

Performs the -= operation. Read more

Performs the -= operation. Read more

The type returned in the event of a conversion error.

Performs the conversion.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Converts self into T using Into<T>. Read more

Extract a subset of the possible types in a coproduct (or get the remaining possibilities) Read more

Compare self to key and return true if they are equal.

Causes self to use its Binary implementation when Debug-formatted.

Causes self to use its Display implementation when Debug-formatted. Read more

Causes self to use its LowerExp implementation when Debug-formatted. Read more

Causes self to use its LowerHex implementation when Debug-formatted. Read more

Causes self to use its Octal implementation when Debug-formatted.

Causes self to use its Pointer implementation when Debug-formatted. Read more

Causes self to use its UpperExp implementation when Debug-formatted. Read more

Causes self to use its UpperHex implementation when Debug-formatted. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Performs the indexed conversion.

Pipes by value. This is generally the method you want to use. Read more

Borrows self and passes that borrow into the pipe function. Read more

Mutably borrows self and passes that borrow into the pipe function. Read more

Borrows self, then passes self.borrow() into the pipe function. Read more

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more

Borrows self, then passes self.as_ref() into the pipe function.

Mutably borrows self, then passes self.as_mut() into the pipe function. Read more

Borrows self, then passes self.deref() into the pipe function.

Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more

The alignment of pointer.

The type for initializers.

Initializes a with the given initializer. Read more

Dereferences the given pointer. Read more

Mutably dereferences the given pointer. Read more

Drops the object pointed to by the given pointer. Read more

Should always be Self

Consumes the current HList and returns an HList with the requested shape. Read more

Immutable access to a value. Read more

Mutable access to a value. Read more

Immutable access to the Borrow<B> of a value. Read more

Mutable access to the BorrowMut<B> of a value. Read more

Immutable access to the AsRef<R> view of a value. Read more

Mutable access to the AsMut<R> view of a value. Read more

Immutable access to the Deref::Target of a value. Read more

Mutable access to the Deref::Target of a value. Read more

Calls .tap() only in debug builds, and is erased in release builds.

Calls .tap_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

Converts the given value to a String. Read more

Attempts to convert self into T using TryInto<T>. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more