pub struct Ipv4Addr { /* private fields */ }
Expand description

An IPv4 address.

IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.

See IpAddr for a type encompassing both IPv4 and IPv6 addresses.

Textual representation

Ipv4Addr provides a FromStr implementation. The four octets are in decimal notation, divided by . (this is called “dot-decimal notation”).

Examples

use no_std_net::Ipv4Addr;

let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!("127.0.0.1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);

Implementations

Creates a new IPv4 address from four eight-bit octets.

The result will represent the IP address a.b.c.d.

Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);

Creates a new IPv4 address with the address pointing to localhost: 127.0.0.1.

Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::localhost();
assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));

Creates a new IPv4 address representing an unspecified address: 0.0.0.0

Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::unspecified();
assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));

Returns the four eight-bit integers that make up this address.

Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(addr.octets(), [127, 0, 0, 1]);

Returns true for the special ‘unspecified’ address (0.0.0.0).

This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.

Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);

Returns true if this is a loopback address (127.0.0.0/8).

This property is defined by IETF RFC 1122.

Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);

Returns true if this is a private address.

The private address ranges are defined in IETF RFC 1918 and include:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16
Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);

Returns true if the address is link-local (169.254.0.0/16).

This property is defined by IETF RFC 3927.

Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);

Returns true if the address appears to be globally routable. See iana-ipv4-special-registry.

The following return false:

  • private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
  • the loopback address (127.0.0.0/8)
  • the link-local address (169.254.0.0/16)
  • the broadcast address (255.255.255.255/32)
  • test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
  • the unspecified address (0.0.0.0)
Examples
use no_std_net::Ipv4Addr;

fn main() {
    assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
    assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
    assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
    assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
    assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
}

Returns true if this is a multicast address (224.0.0.0/4).

Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.

Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);

Returns true if this is a broadcast address (255.255.255.255).

A broadcast address has all octets set to 255 as defined in IETF RFC 919.

Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);

Returns true if this address is in a range designated for documentation.

This is defined in IETF RFC 5737:

  • 192.0.2.0/24 (TEST-NET-1)
  • 198.51.100.0/24 (TEST-NET-2)
  • 203.0.113.0/24 (TEST-NET-3)
Examples
use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);

Converts this address to an IPv4-compatible IPv6 address.

a.b.c.d becomes ::a.b.c.d

Examples
use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767));

Converts this address to an IPv4-mapped IPv6 address.

a.b.c.d becomes ::ffff:a.b.c.d

Examples
use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));

Trait Implementations

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Deserialize this value from the given Serde deserializer. Read more
Formats the value using the given formatter. Read more

Creates an Ipv4Addr from a four element byte array.

Examples
use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
Converts to this type from the input type.
The associated error which can be returned from parsing.
Parses a string s to return a value of this type. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.