pub struct State { /* private fields */ }
Expand description
Manages stateful parts of your document.
Let’s say you have some computations in your document and want to remember the result of your last computation to use it in the next one. You might try something similar to the code below and expect it to output 10, 13, 26, and 21. However this does not work in Typst. If you test this code, you will see that Typst complains with the following error message: Variables from outside the function are read-only and cannot be modified.
// This doesn't work!
#let x = 0
#let compute(expr) = {
x = eval(
expr.replace("x", str(x))
)
[New value is #x. ]
}
#compute("10") \
#compute("x + 3") \
#compute("x * 2") \
#compute("x - 5")
§State and document markup { #state-and-markup }
Why does it do that? Because, in general, this kind of computation with side effects is problematic in document markup and Typst is upfront about that. For the results to make sense, the computation must proceed in the same order in which the results will be laid out in the document. In our simple example, that’s the case, but in general it might not be.
Let’s look at a slightly different, but similar kind of state: The heading numbering. We want to increase the heading counter at each heading. Easy enough, right? Just add one. Well, it’s not that simple. Consider the following example:
#set heading(numbering: "1.")
#let template(body) = [
= Outline
...
#body
]
#show: template
= Introduction
...
Here, Typst first processes the body of the document after the show rule,
sees the Introduction
heading, then passes the resulting content to the
template
function and only then sees the Outline
. Just counting up would
number the Introduction
with 1
and the Outline
with 2
.
§Managing state in Typst { #state-in-typst }
So what do we do instead? We use Typst’s state management system. Calling
the state
function with an identifying string key and an optional initial
value gives you a state value which exposes a few functions. The two most
important ones are get
and update
:
-
The
get
function retrieves the current value of the state. Because the value can vary over the course of the document, it is a contextual function that can only be used when context is available. -
The
update
function modifies the state. You can give it any value. If given a non-function value, it sets the state to that value. If given a function, that function receives the previous state and has to return the new state.
Our initial example would now look like this:
#let s = state("x", 0)
#let compute(expr) = [
#s.update(x =>
eval(expr.replace("x", str(x)))
)
New value is #context s.get().
]
#compute("10") \
#compute("x + 3") \
#compute("x * 2") \
#compute("x - 5")
State managed by Typst is always updated in layout order, not in evaluation
order. The update
method returns content and its effect occurs at the
position where the returned content is inserted into the document.
As a result, we can now also store some of the computations in variables, but they still show the correct results:
>>> #let s = state("x", 0)
>>> #let compute(expr) = [
>>> #s.update(x =>
>>> eval(expr.replace("x", str(x)))
>>> )
>>> New value is #context s.get().
>>> ]
<<< ...
#let more = [
#compute("x * 2") \
#compute("x - 5")
]
#compute("10") \
#compute("x + 3") \
#more
This example is of course a bit silly, but in practice this is often exactly what you want! A good example are heading counters, which is why Typst’s counting system is very similar to its state system.
§Time Travel
By using Typst’s state management system you also get time travel
capabilities! We can find out what the value of the state will be at any
position in the document from anywhere else. In particular, the at
method
gives us the value of the state at any particular location and the final
methods gives us the value of the state at the end of the document.
>>> #let s = state("x", 0)
>>> #let compute(expr) = [
>>> #s.update(x => {
>>> eval(expr.replace("x", str(x)))
>>> })
>>> New value is #context s.get().
>>> ]
<<< ...
Value at `<here>` is
#context s.at(<here>)
#compute("10") \
#compute("x + 3") \
*Here.* <here> \
#compute("x * 2") \
#compute("x - 5")
§A word of caution { #caution }
To resolve the values of all states, Typst evaluates parts of your code multiple times. However, there is no guarantee that your state manipulation can actually be completely resolved.
For instance, if you generate state updates depending on the final value of
a state, the results might never converge. The example below illustrates
this. We initialize our state with 1
and then update it to its own final
value plus 1. So it should be 2
, but then its final value is 2
, so it
should be 3
, and so on. This example displays a finite value because Typst
simply gives up after a few attempts.
// This is bad!
#let s = state("x", 1)
#context s.update(s.final() + 1)
#context s.get()
In general, you should try not to generate state updates from within context expressions. If possible, try to express your updates as non-contextual values or functions that compute the new value from the previous value. Sometimes, it cannot be helped, but in those cases it is up to you to ensure that the result converges.
Implementations§
Source§impl State
impl State
Sourcepub fn get(
&self,
engine: &mut Engine<'_>,
context: Tracked<'_, Context<'_>>,
span: Span,
) -> SourceResult<Value>
pub fn get( &self, engine: &mut Engine<'_>, context: Tracked<'_, Context<'_>>, span: Span, ) -> SourceResult<Value>
Retrieves the value of the state at the current location.
This is equivalent to {state.at(here())}
.
Sourcepub fn at(
&self,
engine: &mut Engine<'_>,
context: Tracked<'_, Context<'_>>,
span: Span,
selector: LocatableSelector,
) -> SourceResult<Value>
pub fn at( &self, engine: &mut Engine<'_>, context: Tracked<'_, Context<'_>>, span: Span, selector: LocatableSelector, ) -> SourceResult<Value>
Sourcepub fn final_(
&self,
engine: &mut Engine<'_>,
context: Tracked<'_, Context<'_>>,
span: Span,
) -> SourceResult<Value>
pub fn final_( &self, engine: &mut Engine<'_>, context: Tracked<'_, Context<'_>>, span: Span, ) -> SourceResult<Value>
Retrieves the value of the state at the end of the document.
Sourcepub fn update(self, span: Span, update: StateUpdate) -> Content
pub fn update(self, span: Span, update: StateUpdate) -> Content
Update the value of the state.
The update will be in effect at the position where the returned content
is inserted into the document. If you don’t put the output into the
document, nothing happens! This would be the case, for example, if you
write {let _ = state("key").update(7)}
. State updates are always
applied in layout order and in that case, Typst wouldn’t know when to
update the state.
Trait Implementations§
Source§impl FromValue for State
impl FromValue for State
Source§fn from_value(value: Value) -> HintedStrResult<Self>
fn from_value(value: Value) -> HintedStrResult<Self>
Self
.Source§impl NativeScope for State
impl NativeScope for State
Source§fn constructor() -> Option<&'static NativeFuncData>
fn constructor() -> Option<&'static NativeFuncData>
Source§impl NativeType for State
impl NativeType for State
impl StructuralPartialEq for State
Auto Trait Implementations§
impl Freeze for State
impl !RefUnwindSafe for State
impl Send for State
impl Sync for State
impl Unpin for State
impl !UnwindSafe for State
Blanket Implementations§
Source§impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
Source§fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
Source§fn adapt_into(self) -> D
fn adapt_into(self) -> D
Source§impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
Source§fn arrays_from(colors: C) -> T
fn arrays_from(colors: C) -> T
Source§impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
Source§fn arrays_into(self) -> C
fn arrays_into(self) -> C
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
Source§type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
parameters
when converting.Source§fn cam16_into_unclamped(
self,
parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>,
) -> T
fn cam16_into_unclamped( self, parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.Source§impl<T> CheckedAs for T
impl<T> CheckedAs for T
Source§fn checked_as<Dst>(self) -> Option<Dst>where
T: CheckedCast<Dst>,
fn checked_as<Dst>(self) -> Option<Dst>where
T: CheckedCast<Dst>,
Source§impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere
Src: CheckedCast<Dst>,
impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere
Src: CheckedCast<Dst>,
Source§fn checked_cast_from(src: Src) -> Option<Dst>
fn checked_cast_from(src: Src) -> Option<Dst>
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
Source§fn components_from(colors: C) -> T
fn components_from(colors: C) -> T
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<T> FromAngle<T> for T
impl<T> FromAngle<T> for T
Source§fn from_angle(angle: T) -> T
fn from_angle(angle: T) -> T
angle
.Source§impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
Source§fn from_stimulus(other: U) -> T
fn from_stimulus(other: U) -> T
other
into Self
, while performing the appropriate scaling,
rounding and clamping.Source§impl<T> FromValue<Spanned<Value>> for Twhere
T: FromValue,
impl<T> FromValue<Spanned<Value>> for Twhere
T: FromValue,
Source§fn from_value(value: Spanned<Value>) -> Result<T, HintedString>
fn from_value(value: Spanned<Value>) -> Result<T, HintedString>
Self
.Source§impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
Source§fn into_angle(self) -> U
fn into_angle(self) -> U
T
.Source§impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
Source§type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
parameters
when converting.Source§fn into_cam16_unclamped(
self,
parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>,
) -> T
fn into_cam16_unclamped( self, parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.Source§impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
Source§fn into_color(self) -> U
fn into_color(self) -> U
Source§impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
Source§fn into_color_unclamped(self) -> U
fn into_color_unclamped(self) -> U
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoResult for Twhere
T: IntoValue,
impl<T> IntoResult for Twhere
T: IntoValue,
Source§fn into_result(self, _: Span) -> Result<Value, EcoVec<SourceDiagnostic>>
fn into_result(self, _: Span) -> Result<Value, EcoVec<SourceDiagnostic>>
Source§impl<T> IntoStimulus<T> for T
impl<T> IntoStimulus<T> for T
Source§fn into_stimulus(self) -> T
fn into_stimulus(self) -> T
self
into T
, while performing the appropriate scaling,
rounding and clamping.Source§impl<T> OverflowingAs for T
impl<T> OverflowingAs for T
Source§fn overflowing_as<Dst>(self) -> (Dst, bool)where
T: OverflowingCast<Dst>,
fn overflowing_as<Dst>(self) -> (Dst, bool)where
T: OverflowingCast<Dst>,
Source§impl<Src, Dst> OverflowingCastFrom<Src> for Dstwhere
Src: OverflowingCast<Dst>,
impl<Src, Dst> OverflowingCastFrom<Src> for Dstwhere
Src: OverflowingCast<Dst>,
Source§fn overflowing_cast_from(src: Src) -> (Dst, bool)
fn overflowing_cast_from(src: Src) -> (Dst, bool)
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> SaturatingAs for T
impl<T> SaturatingAs for T
Source§fn saturating_as<Dst>(self) -> Dstwhere
T: SaturatingCast<Dst>,
fn saturating_as<Dst>(self) -> Dstwhere
T: SaturatingCast<Dst>,
Source§impl<Src, Dst> SaturatingCastFrom<Src> for Dstwhere
Src: SaturatingCast<Dst>,
impl<Src, Dst> SaturatingCastFrom<Src> for Dstwhere
Src: SaturatingCast<Dst>,
Source§fn saturating_cast_from(src: Src) -> Dst
fn saturating_cast_from(src: Src) -> Dst
Source§impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
Source§type Error = <C as TryFromComponents<T>>::Error
type Error = <C as TryFromComponents<T>>::Error
try_into_colors
fails to cast.Source§fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
Source§impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
Source§fn try_into_color(self) -> Result<U, OutOfBounds<U>>
fn try_into_color(self) -> Result<U, OutOfBounds<U>>
OutOfBounds
error is returned which contains
the unclamped color. Read more