[−][src]Struct trees::forest::Forest
List of Nodes as its children.
Implementations
impl<T> Forest<T>[src]
pub fn new() -> Forest<T>[src]
Makes an empty Forest.
pub fn from_tuple<Tuple, Shape>(tuple: Tuple) -> Self where
Tuple: TupleForest<T, Shape>, [src]
Tuple: TupleForest<T, Shape>,
Construct forest from tuple notations.
Examples
use trees::{Forest, tr}; let forest = Forest::<i32>::from_tuple(( 0, (1,2), (3,4) )); assert_eq!( forest, -tr(0) -tr(1)/tr(2) -tr(3)/tr(4) ); assert_eq!( forest.to_string(), "( 0 1( 2 ) 3( 4 ) )" );
pub fn has_no_child(&self) -> bool[src]
Returns true if Forest is empty.
Examples
use trees::{tr, fr}; let mut forest = fr(); assert!( forest.has_no_child() ); forest.push_back( tr(1) ); assert!( !forest.has_no_child() );
pub fn degree(&self) -> usize[src]
Returns the number of child nodes in Forest.
Examples
use trees::Forest; let forest = Forest::<i32>::from_tuple(( 0, (1,2), (3,4) )); assert_eq!( forest.degree(), 3 );
pub fn node_count(&self) -> usize[src]
Returns the number of all child nodes in Forest.
Examples
use trees::Forest; let forest = Forest::<i32>::from_tuple(( 0, (1,2), (3,4) )); assert_eq!( forest.node_count(), 5 );
pub fn iter<'a, 's: 'a>(&'s self) -> Iter<'a, T>ⓘ[src]
Provides a forward iterator over child Nodes.
Examples
use trees::{tr, fr}; let forest = fr::<i32>(); assert_eq!( forest.iter().next(), None ); let forest = -tr(1)-tr(2); let mut iter = forest.iter(); assert_eq!( iter.next(), Some( tr(1).root() )); assert_eq!( iter.next(), Some( tr(2).root() )); assert_eq!( iter.next(), None );
pub fn iter_mut<'a, 's: 'a>(&'s mut self) -> IterMut<'a, T>ⓘ[src]
Provides a forward iterator over child Nodes with mutable references.
Examples
use trees::Forest; let mut forest = Forest::<i32>::new(); assert_eq!( forest.iter_mut().next(), None ); let mut forest = Forest::<i32>::from_tuple(( 1, 2 )); forest.iter_mut().for_each( |mut child| { *child.data_mut() *= 10; }); assert_eq!( forest.to_string(), "( 10 20 )" );
pub fn front(&self) -> Option<&Node<T>>[src]
Returns the first child of the forest,
or None if it is empty.
pub fn front_mut(&mut self) -> Option<Pin<&mut Node<T>>>[src]
Returns a mutable pointer to the first child of the forest,
or None if it is empty.
pub fn back(&self) -> Option<&Node<T>>[src]
pub fn back_mut(&mut self) -> Option<Pin<&mut Node<T>>>[src]
Returns a mutable pointer to the last child of the forest,
or None if it is empty.
pub fn push_front(&mut self, tree: Tree<T>)[src]
Add the tree as the first child.
Examples
use trees::{Tree, Forest}; let mut forest = Forest::new(); forest.push_front( Tree::new(1) ); assert_eq!( forest.to_string(), "( 1 )" ); forest.push_front( Tree::new(2) ); assert_eq!( forest.to_string(), "( 2 1 )" );
pub fn push_back(&mut self, tree: Tree<T>)[src]
Add the tree as the last child.
Examples
use trees::{Tree, Forest}; let mut forest = Forest::new(); forest.push_back( Tree::new(1) ); assert_eq!( forest.to_string(), "( 1 )" ); forest.push_back( Tree::new(2) ); assert_eq!( forest.to_string(), "( 1 2 )" );
pub fn pop_front(&mut self) -> Option<Tree<T>>[src]
Remove and return the first child.
Examples
use trees::{Tree, Forest}; let mut forest = Forest::new(); forest.push_back( Tree::new(1) ); forest.push_back( Tree::new(2) ); assert_eq!( forest.to_string(), "( 1 2 )" ); assert_eq!( forest.pop_front(), Some( Tree::new(1) )); assert_eq!( forest.to_string(), "( 2 )" ); assert_eq!( forest.pop_front(), Some( Tree::new(2) )); assert_eq!( forest.to_string(), "()" );
pub fn pop_back(&mut self) -> Option<Tree<T>>[src]
Remove and return the first child.
Examples
use trees::{Tree, Forest}; let mut forest = Forest::new(); forest.push_back( Tree::new(1) ); forest.push_back( Tree::new(2) ); assert_eq!( forest.to_string(), "( 1 2 )" ); assert_eq!( forest.pop_back(), Some( Tree::new(2) )); assert_eq!( forest.to_string(), "( 1 )" ); assert_eq!( forest.pop_back(), Some( Tree::new(1) )); assert_eq!( forest.to_string(), "()" );
pub fn prepend(&mut self, forest: Forest<T>)[src]
Add all the forest's trees at front of children list
Examples
use trees::{Tree, Forest}; let mut forest = Forest::new(); forest.push_back( Tree::new(1) ); forest.push_back( Tree::new(2) ); let mut forest2 = Forest::new(); forest2.push_back( Tree::new(3) ); forest2.push_back( Tree::new(4) ); forest.prepend( forest2 ); assert_eq!( forest.to_string(), "( 3 4 1 2 )" );
pub fn append(&mut self, forest: Forest<T>)[src]
Add all the forest's trees at back of children list
Examples
use trees::{Tree, Forest}; let mut forest = Forest::new(); forest.push_back( Tree::new(1) ); forest.push_back( Tree::new(2) ); let mut forest2 = Forest::new(); forest2.push_back( Tree::new(3) ); forest2.push_back( Tree::new(4) ); forest.append( forest2 ); assert_eq!( forest.to_string(), "( 1 2 3 4 )" );
impl<T> Forest<T>[src]
pub fn bfs(&self) -> BfsForest<Splitted<Iter<'_, T>>>[src]
Provides a forward iterator in a breadth-first manner.
Examples
use trees::Forest; let forest = Forest::from_tuple(( (1,2,3), (4,5,6), )); let visits = forest.bfs().iter .map( |visit| (*visit.data, visit.size.degree, visit.size.descendants )) .collect::<Vec<_>>(); assert_eq!( visits, vec![ (1, 2, 2), (4, 2, 2), (2, 0, 0), (3, 0, 0), (5, 0, 0), (6, 0, 0), ]);
pub fn bfs_mut(&mut self) -> BfsForest<Splitted<IterMut<'_, T>>>[src]
Provides a forward iterator with mutable references in a breadth-first manner.
Examples
use trees::Forest; let mut forest = Forest::<i32>::from_tuple(( (1,2,3), (4,5,6), )); forest.bfs_mut().iter .zip( 0.. ) .for_each( |(visit,nth)| *visit.data += 10 * nth ); assert_eq!( forest, Forest::from_tuple(( (1,(22,),(33,)), (14,(45,),(56,)), )));
pub fn into_bfs(self: Forest<T>) -> BfsForest<Splitted<IntoIter<T>>>[src]
Provides a forward iterator with owned data in a breadth-first manner.
Examples
use trees::{bfs,Size}; use trees::Forest; let forest = Forest::<i32>::new(); let visits = forest.into_bfs().iter.collect::<Vec<_>>(); assert!( visits.is_empty() ); let forest = Forest::from_tuple(( (1,2,3), (4,5,6), )); let visits = forest.into_bfs().iter.collect::<Vec<_>>(); assert_eq!( visits, vec![ bfs::Visit{ data: 1, size: Size{ degree: 2, descendants: 2 }}, bfs::Visit{ data: 4, size: Size{ degree: 2, descendants: 2 }}, bfs::Visit{ data: 2, size: Size{ degree: 0, descendants: 0 }}, bfs::Visit{ data: 3, size: Size{ degree: 0, descendants: 0 }}, bfs::Visit{ data: 5, size: Size{ degree: 0, descendants: 0 }}, bfs::Visit{ data: 6, size: Size{ degree: 0, descendants: 0 }}, ]);
Trait Implementations
impl<T: Clone> Clone for Forest<T>[src]
fn clone(&self) -> Self[src]
pub fn clone_from(&mut self, source: &Self)1.0.0[src]
impl<T: Debug> Debug for Forest<T>[src]
impl<T> Default for Forest<T>[src]
impl<T: Display> Display for Forest<T>[src]
impl<'a, T: Clone> Div<&'a Forest<T>> for Tree<T>[src]
type Output = Tree<T>
The resulting type after applying the / operator.
fn div(mut self: Self, rhs: &'a Forest<T>) -> Tree<T>[src]
impl<'a, T: Clone> Div<&'a Forest<T>> for &'a Tree<T>[src]
type Output = Tree<T>
The resulting type after applying the / operator.
fn div(self, rhs: &'a Forest<T>) -> Tree<T>[src]
impl<T> Div<Forest<T>> for Tree<T>[src]
type Output = Tree<T>
The resulting type after applying the / operator.
fn div(mut self: Self, rhs: Forest<T>) -> Tree<T>[src]
impl<'a, T: Clone> Div<Forest<T>> for &'a Tree<T>[src]
type Output = Tree<T>
The resulting type after applying the / operator.
fn div(self, rhs: Forest<T>) -> Tree<T>[src]
impl<T> Drop for Forest<T>[src]
impl<T: Eq> Eq for Forest<T>[src]
impl<T, Iter> From<BfsForest<Iter>> for Forest<T> where
Iter: Iterator<Item = Visit<T>>, [src]
Iter: Iterator<Item = Visit<T>>,
impl<T> From<Forest<T>> for ForestWalk<T>[src]
impl<T> From<ForestWalk<T>> for Forest<T>[src]
fn from(walk: ForestWalk<T>) -> Self[src]
impl<T: Hash> Hash for Forest<T>[src]
fn hash<H: Hasher>(&self, state: &mut H)[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
impl<T> IntoIterator for Forest<T>[src]
type Item = Tree<T>
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IntoIter<T>ⓘ[src]
impl<T: Ord> Ord for Forest<T>[src]
fn cmp(&self, other: &Self) -> Ordering[src]
#[must_use]pub fn max(self, other: Self) -> Self1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self1.50.0[src]
impl<T: PartialEq> PartialEq<Forest<T>> for Forest<T>[src]
impl<T: PartialOrd> PartialOrd<Forest<T>> for Forest<T>[src]
fn partial_cmp(&self, other: &Self) -> Option<Ordering>[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl<'a, T: Clone> Sub<&'a Forest<T>> for Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(mut self: Self, rhs: &'a Forest<T>) -> Self[src]
impl<'a, T: Clone> Sub<&'a Tree<T>> for Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(mut self: Self, rhs: &'a Tree<T>) -> Self[src]
impl<'a, 'b, T: Clone> Sub<&'b Forest<T>> for &'a Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(self, rhs: &'b Forest<T>) -> Forest<T>[src]
impl<'a, 'b, T: Clone> Sub<&'b Tree<T>> for &'a Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(self, rhs: &'b Tree<T>) -> Forest<T>[src]
impl<T> Sub<Forest<T>> for Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(mut self: Self, rhs: Self) -> Self[src]
impl<'a, T: Clone> Sub<Forest<T>> for &'a Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(self, mut rhs: Forest<T>) -> Forest<T>[src]
impl<T> Sub<Tree<T>> for Forest<T>[src]
type Output = Forest<T>
The resulting type after applying the - operator.
fn sub(mut self: Self, rhs: Tree<T>) -> Self[src]
impl<'a, T: Clone> Sub<Tree<T>> for &'a Forest<T>[src]
Auto Trait Implementations
impl<T> !RefUnwindSafe for Forest<T>[src]
impl<T> !Send for Forest<T>[src]
impl<T> !Sync for Forest<T>[src]
impl<T> Unpin for Forest<T> where
T: Unpin, [src]
T: Unpin,
impl<T> !UnwindSafe for Forest<T>[src]
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut Tⓘ[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T[src]
pub fn clone_into(&self, target: &mut T)[src]
impl<T> ToString for T where
T: Display + ?Sized, [src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.