Struct tract_tensorflow::model::Tensorflow
source · pub struct Tensorflow {
pub op_register: TfOpRegister,
}
Fields§
§op_register: TfOpRegister
Implementations§
source§impl Tensorflow
impl Tensorflow
pub fn determinize(model: &mut GraphDef) -> TractResult<()>
pub fn read_frozen_from_path( &self, p: impl AsRef<Path> ) -> TractResult<GraphDef>
pub fn read_frozen_model(&self, r: &mut dyn Read) -> TractResult<GraphDef>
pub fn open_saved_model(&self, r: &mut dyn Read) -> TractResult<SavedModel>
sourcepub fn read_saved_model(&self, r: &mut dyn Read) -> TractResult<GraphDef>
pub fn read_saved_model(&self, r: &mut dyn Read) -> TractResult<GraphDef>
Convenience method: will read the first model in the saved model container. Use open_avec_model for more control.
pub fn parse_graph(&self, graph: &GraphDef) -> TractResult<TfModelAndExtensions>
pub fn parse_graph_with_symbols( &self, graph: &GraphDef, symbols: &SymbolTable ) -> TractResult<TfModelAndExtensions>
Trait Implementations§
source§impl Framework<GraphDef, Graph<InferenceFact, Box<dyn InferenceOp, Global>>> for Tensorflow
impl Framework<GraphDef, Graph<InferenceFact, Box<dyn InferenceOp, Global>>> for Tensorflow
source§fn proto_model_for_path(&self, r: impl AsRef<Path>) -> TractResult<GraphDef>
fn proto_model_for_path(&self, r: impl AsRef<Path>) -> TractResult<GraphDef>
This method will try to read as frozen model, then as a saved model.
source§fn proto_model_for_read(&self, r: &mut dyn Read) -> TractResult<GraphDef>
fn proto_model_for_read(&self, r: &mut dyn Read) -> TractResult<GraphDef>
This method expects a frozen model, use open_saved_model for TF2 saved model format.
source§fn model_for_proto_model_with_symbols(
&self,
graph: &GraphDef,
symbols: &SymbolTable
) -> TractResult<InferenceModel>
fn model_for_proto_model_with_symbols( &self, graph: &GraphDef, symbols: &SymbolTable ) -> TractResult<InferenceModel>
Translate a proto model into a model, with some symbols already listed.
§fn model_for_proto_model(&self, proto: &ProtoModel) -> Result<Model, Error>
fn model_for_proto_model(&self, proto: &ProtoModel) -> Result<Model, Error>
Translate a proto model into a model.
§fn model_for_read(&self, r: &mut dyn Read) -> Result<Model, Error>
fn model_for_read(&self, r: &mut dyn Read) -> Result<Model, Error>
Read a model from a reader
Auto Trait Implementations§
impl RefUnwindSafe for Tensorflow
impl Send for Tensorflow
impl Sync for Tensorflow
impl Unpin for Tensorflow
impl UnwindSafe for Tensorflow
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any, Global>
Convert
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T, Global>) -> Rc<dyn Any, Global>
fn into_any_rc(self: Rc<T, Global>) -> Rc<dyn Any, Global>
Convert
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.