Struct tract_pulse::fact::PulsedFact
source · pub struct PulsedFact {
pub datum_type: DatumType,
pub shape: ShapeFact,
pub stream: Option<StreamInfo>,
}Fields§
§datum_type: DatumType§shape: ShapeFact§stream: Option<StreamInfo>Implementations§
source§impl PulsedFact
impl PulsedFact
sourcepub fn from_tensor_fact_pulse(
tf: &TypedFact,
symbol: &Symbol,
pulse: &TDim
) -> TractResult<PulsedFact>
pub fn from_tensor_fact_pulse(
tf: &TypedFact,
symbol: &Symbol,
pulse: &TDim
) -> TractResult<PulsedFact>
Examples found in repository?
src/ops/source.rs (line 15)
6 7 8 9 10 11 12 13 14 15 16 17 18
pub fn pulsify(
_op: &TypedSource,
_source: &TypedModel,
node: &TypedNode,
target: &mut PulsedModel,
_mapping: &HashMap<OutletId, OutletId>,
stream_symbol: &Symbol,
pulse: &TDim,
) -> TractResult<Option<TVec<OutletId>>> {
let pulsed_fact = PulsedFact::from_tensor_fact_pulse(&node.outputs[0].fact, stream_symbol, pulse)?;
let id = target.add_source(node.name.clone(), pulsed_fact)?;
Ok(Some(tvec!(id)))
}sourcepub fn pulse(&self) -> Option<&TDim>
pub fn pulse(&self) -> Option<&TDim>
Examples found in repository?
src/ops/downsample.rs (line 28)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
fn pulsify(
op: &Downsample,
_source: &TypedModel,
node: &TypedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
_symbol: &Symbol,
_pulse: &TDim,
) -> TractResult<Option<TVec<OutletId>>> {
let input = mapping[&node.inputs[0]];
let fact = target.outlet_fact(input)?.clone();
if let Some(stream) = fact.stream.as_ref() {
if stream.axis != op.axis {
return Ok(None);
}
let stride = if op.stride > 0 {
op.stride as usize
} else {
bail!("Negative strides are not causal, can not pulsify.")
};
let pulse = fact.pulse().unwrap();
if !(pulse.clone() % stride).is_zero() {
bail!("Pulsification requires pulse ({}) to be a stride ({}) multiple", pulse, stride)
}
let mut wire = tvec!(input);
let first_offset = stream.delay + op.modulo;
let new_op = Downsample { modulo: first_offset % stride, axis: op.axis, stride: op.stride };
wire = target.wire_node(format!("{}.downsample", node.name), new_op, &wire)?;
wire = target.wire_node(
&node.name,
PulsedAxisSlice {
axis: stream.axis,
skip: first_offset / stride,
take: (stream.dim.to_owned() - op.modulo).divceil(stride),
},
&wire,
)?;
target.rename_node(wire[0].node, &node.name)?;
Ok(Some(wire))
} else {
Ok(None)
}
}More examples
src/ops/scan.rs (line 70)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> {
let output_count = self
.output_mapping
.iter()
.map(|om| om.scan.map(|s| s.slot).unwrap_or(0).max(om.last_value_slot.unwrap_or(0)))
.max()
.context("no output?")?
+ 1;
let mut facts = tvec!();
for output_slot in 0..output_count {
let (output_body_ix, output_mapping) = self
.output_mapping
.iter()
.enumerate()
.find(|(_ix, om)| om.scan.map(|s| s.slot) == Some(output_slot))
.context("Scan pulse only supports full outputs")?;
let output_body_fact = self.body.output_fact(output_body_ix)?;
let shape: ShapeFact = output_body_fact
.shape
.iter()
.enumerate()
.map(|(axis, d)| {
if axis == output_mapping.scan.unwrap().axis {
inputs[0].pulse().unwrap().to_dim()
} else {
d
}
})
.collect();
let fact = PulsedFact {
datum_type: output_body_fact.datum_type,
shape,
stream: Some(StreamInfo {
axis: output_mapping.scan.unwrap().axis,
dim: inputs[0].stream.as_ref().unwrap().dim.clone(),
delay: inputs[0].stream.as_ref().unwrap().delay,
}),
};
facts.push(fact);
}
Ok(facts)
}src/ops/array/pad.rs (line 23)
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
fn pulsify(
op: &Pad,
_source: &TypedModel,
node: &TypedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
_symbol: &Symbol,
_pulse: &TDim,
) -> TractResult<Option<TVec<OutletId>>> {
let mut input = mapping[&node.inputs[0]];
let fact = target.outlet_fact(input)?.clone();
let stream = fact.stream.as_ref().unwrap();
if !op.pads.iter().enumerate().all(|(ax, &(a, b))| ax == stream.axis || (a == 0 && b == 0)) {
return Ok(None);
}
let (before, after) = op.pads[stream.axis];
let pulse = fact.pulse().unwrap();
let mut extra_delay = before.saturating_sub(stream.delay);
match op.mode {
PadMode::Constant(_) => (),
PadMode::Edge => {
let pulse = if let Ok(pulse) = pulse.to_usize() {
pulse
} else {
bail!("Edge padding can only by pulsified with concrete integer values")
};
if before < pulse {
let start_offset = (stream.delay + extra_delay) % pulse;
if before > start_offset {
extra_delay += before - start_offset;
}
} else {
bail!(
"Edge padding mode needs pulse strictly bigger than left padding (pulse={} padding={})",
pulse,
before
)
}
}
PadMode::Reflect => bail!("Reflect padding mode pulsing is not supported"),
};
if extra_delay > 0 {
input = target.wire_node(
format!("{}.Delay", node.name),
Delay::new_typed(&(&fact).into(), stream.axis, extra_delay, 0),
&[input],
)?[0];
}
let op = PulsePad {
axis: stream.axis,
before,
after: after.into(),
begin_input: stream.delay + extra_delay,
end_input: stream.delay.to_dim() + extra_delay + &stream.dim,
mode: op.mode.clone(),
overlap: 0,
};
Ok(Some(target.wire_node(&*node.name, op, &[input])?))
}src/ops/cnn/deconv.rs (line 19)
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
fn pulsify(
op: &DeconvUnary,
source: &TypedModel,
node: &TypedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
_symbol: &Symbol,
_pulse: &TDim,
) -> TractResult<Option<TVec<OutletId>>> {
let fact = target.outlet_fact(mapping[&node.inputs[0]])?.clone();
let pulse = fact.pulse().unwrap();
let stream = fact.stream.as_ref().unwrap();
let c_axis = op.pool_spec.data_format.shape(&fact.shape)?.c_axis();
if c_axis == stream.axis {
bail!("Pulsification on C axis is not supported");
}
if op
.invariants(&source.node_input_facts(node.id)?, &source.node_output_facts(node.id)?)?
.track_input_axis(0, stream.axis)
.is_some()
{
// general case for invariants will manage
return Ok(None);
}
let geo_axis = stream.axis - op.pool_spec.data_format.h_axis();
let stride = op.pool_spec.stride(geo_axis);
let mut pulse_op = op.clone();
pulse_op.adjustments[geo_axis] = stride - 1;
pulse_op.pool_spec.padding = PaddingSpec::Valid;
let deconv =
target.wire_node(format!("{}.deconv", node.name), pulse_op, &[mapping[&node.inputs[0]]])?
[0];
let overlap = overlap(stream.axis, op);
let deconv_input_dim = (stream.dim.clone() - 1) * stride + 1;
let output_shape = tract_core::ops::cnn::deconv::output_shape(
&op.pool_spec,
&fact.streaming_shape(),
&op.adjustments,
)?;
let kernel_spatial_shape = match op.kernel_format {
tract_core::ops::cnn::KernelFormat::OIHW => &op.kernel.shape()[2..],
tract_core::ops::cnn::KernelFormat::HWIO => &op.kernel.shape()[..op.kernel.rank() - 2],
};
let shape = op.pool_spec.data_format.shape(fact.streaming_shape())?;
let paddings = op.pool_spec.padding.compute_for_deconv(
shape.hw_dims(),
kernel_spatial_shape,
&op.pool_spec.dilations(),
&op.pool_spec.strides(),
&op.adjustments,
)?;
let mut wire = target.wire_node(
&node.name,
DeconvDelay {
axis: stream.axis,
overlap,
delay: paddings[geo_axis].pad_before.to_usize()? + stream.delay,
deconv_input_dim,
stride,
pulse: pulse.to_owned(),
deconv_output_dim: output_shape[stream.axis].clone(),
},
&[deconv],
)?;
for (geo_axis, padding) in paddings.iter().enumerate() {
if !padding.pad_before.is_zero() || !padding.pad_after.is_zero() {
let axis = geo_axis + shape.h_axis();
if axis == stream.axis {
continue;
};
let op = crate::model::PulseWrappingOp(Box::new(tract_core::ops::array::Slice::new(
axis,
padding.pad_before.clone(),
padding.deconvoluted.clone() + &padding.pad_before,
)));
wire = target.wire_node(format!("{}.padding.{}", node.name, geo_axis), op, &wire)?;
}
}
Ok(Some(wire))
}src/ops/cnn/pools.rs (line 124)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
pub fn pulsify_pooled_input(
spec: &PoolSpec,
_source: &TypedModel,
node: &TypedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
padding_value: Option<Tensor>,
) -> TractResult<Option<(OutletId, PoolSpec)>> {
let mut wire = mapping[&node.inputs[0]];
let input_fact: PulsedFact = target.outlet_fact(wire)?.clone();
let input_stream = input_fact.stream.as_ref().unwrap();
let input_shape = spec.data_format.shape(input_fact.shape.clone())?;
if Some(input_stream.axis) == input_shape.n_axis() {
return Ok(None);
}
if input_stream.axis == input_shape.c_axis() {
bail!("Can not pulsify cnn pooling ops along the input channel axis");
}
let geo_axis = input_stream.axis - input_shape.h_axis();
let stride = spec.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1);
let pulse = input_fact.pulse().unwrap();
if !(pulse.to_owned() % (stride as i64)).is_zero() {
bail!("Pulsification requires pulse ({}) to be a stride ({}) multiple", pulse, stride)
}
let dilation = spec.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1);
let kernel_len = (spec.kernel_shape[geo_axis] - 1) * dilation;
let overlap = (kernel_len + 1).saturating_sub(stride);
let computed_padding = spec.padding.compute_one(
geo_axis,
&input_stream.dim,
spec.kernel_shape[geo_axis],
spec.dilation(geo_axis),
spec.stride(geo_axis),
);
let before = computed_padding.pad_before.to_usize()?;
let early = input_stream.delay as isize + overlap as isize - before as isize;
let mut extra_delay = if early < 0 { (-early) as usize } else { 0 };
let delayed_input = input_stream.delay + overlap + extra_delay - before;
let misalignment = delayed_input % stride;
if misalignment > 0 {
extra_delay += stride - misalignment;
}
if overlap > 0 || extra_delay > 0 {
wire = target.wire_node(
format!("{}.delay", node.name),
tract_pulse_opl::ops::Delay::new_typed(
&(&input_fact).into(),
input_stream.axis,
extra_delay,
overlap,
),
&[wire],
)?[0];
}
let has_padding =
!computed_padding.pad_before.is_zero() || !computed_padding.pad_after.is_zero();
if has_padding {
use tract_core::ops::array::PadMode;
let value = if let Some(tensor) = padding_value {
tensor.into_arc_tensor()
} else {
bail!("No padding value for streaming pool operation");
};
let op = tract_pulse_opl::ops::PulsePad {
axis: input_stream.axis,
before,
after: computed_padding.pad_after,
begin_input: input_stream.delay + extra_delay + overlap,
end_input: input_stream.dim.clone()
+ input_stream.delay
+ extra_delay
+ overlap.to_dim(),
mode: PadMode::Constant(value),
overlap,
};
wire = target.wire_node(format!("{}.pulse-pad", node.name), op, &[wire])?[0];
}
if has_padding {
let mut bef = tvec!();
let mut aft = tvec!();
for ix in 0..input_shape.hw_rank() {
if ix == geo_axis {
bef.push(0);
aft.push(0);
} else {
let c = spec.padding.compute_one(
ix,
&input_shape.hw_dims()[ix],
spec.kernel_shape[ix],
spec.dilations()[ix],
spec.strides()[ix],
);
bef.push(c.pad_before.to_usize()?);
aft.push(c.pad_after.to_usize()?);
};
}
Ok(Some((
wire,
PoolSpec { padding: PaddingSpec::Explicit(bef, aft, false), ..spec.clone() },
)))
} else {
Ok(Some((wire, spec.clone())))
}
}sourcepub fn to_pulse_fact(&self) -> TypedFact
pub fn to_pulse_fact(&self) -> TypedFact
Examples found in repository?
src/fact.rs (line 83)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
pub fn to_streaming_fact(&self) -> TypedFact {
let mut info = self.to_pulse_fact();
info.shape = self.streaming_shape().into();
info
}
}
impl fmt::Debug for PulsedFact {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
use tract_itertools::Itertools;
if let Some(stream) = &self.stream {
write!(
fmt,
"{},{:?} [pulse axis:{} ∂:{} full dim:{}]",
self.shape.iter().join(","),
self.datum_type,
stream.axis,
stream.delay,
stream.dim
)
} else {
write!(fmt, "{:?}", self.to_pulse_fact())
}
}sourcepub fn streaming_shape(&self) -> TVec<TDim>
pub fn streaming_shape(&self) -> TVec<TDim>
Examples found in repository?
More examples
src/ops/cnn/deconv.rs (line 45)
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
fn pulsify(
op: &DeconvUnary,
source: &TypedModel,
node: &TypedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
_symbol: &Symbol,
_pulse: &TDim,
) -> TractResult<Option<TVec<OutletId>>> {
let fact = target.outlet_fact(mapping[&node.inputs[0]])?.clone();
let pulse = fact.pulse().unwrap();
let stream = fact.stream.as_ref().unwrap();
let c_axis = op.pool_spec.data_format.shape(&fact.shape)?.c_axis();
if c_axis == stream.axis {
bail!("Pulsification on C axis is not supported");
}
if op
.invariants(&source.node_input_facts(node.id)?, &source.node_output_facts(node.id)?)?
.track_input_axis(0, stream.axis)
.is_some()
{
// general case for invariants will manage
return Ok(None);
}
let geo_axis = stream.axis - op.pool_spec.data_format.h_axis();
let stride = op.pool_spec.stride(geo_axis);
let mut pulse_op = op.clone();
pulse_op.adjustments[geo_axis] = stride - 1;
pulse_op.pool_spec.padding = PaddingSpec::Valid;
let deconv =
target.wire_node(format!("{}.deconv", node.name), pulse_op, &[mapping[&node.inputs[0]]])?
[0];
let overlap = overlap(stream.axis, op);
let deconv_input_dim = (stream.dim.clone() - 1) * stride + 1;
let output_shape = tract_core::ops::cnn::deconv::output_shape(
&op.pool_spec,
&fact.streaming_shape(),
&op.adjustments,
)?;
let kernel_spatial_shape = match op.kernel_format {
tract_core::ops::cnn::KernelFormat::OIHW => &op.kernel.shape()[2..],
tract_core::ops::cnn::KernelFormat::HWIO => &op.kernel.shape()[..op.kernel.rank() - 2],
};
let shape = op.pool_spec.data_format.shape(fact.streaming_shape())?;
let paddings = op.pool_spec.padding.compute_for_deconv(
shape.hw_dims(),
kernel_spatial_shape,
&op.pool_spec.dilations(),
&op.pool_spec.strides(),
&op.adjustments,
)?;
let mut wire = target.wire_node(
&node.name,
DeconvDelay {
axis: stream.axis,
overlap,
delay: paddings[geo_axis].pad_before.to_usize()? + stream.delay,
deconv_input_dim,
stride,
pulse: pulse.to_owned(),
deconv_output_dim: output_shape[stream.axis].clone(),
},
&[deconv],
)?;
for (geo_axis, padding) in paddings.iter().enumerate() {
if !padding.pad_before.is_zero() || !padding.pad_after.is_zero() {
let axis = geo_axis + shape.h_axis();
if axis == stream.axis {
continue;
};
let op = crate::model::PulseWrappingOp(Box::new(tract_core::ops::array::Slice::new(
axis,
padding.pad_before.clone(),
padding.deconvoluted.clone() + &padding.pad_before,
)));
wire = target.wire_node(format!("{}.padding.{}", node.name, geo_axis), op, &wire)?;
}
}
Ok(Some(wire))
}
fn overlap(pulse_axis: usize, op: &DeconvUnary) -> usize {
let geo_axis = pulse_axis - op.pool_spec.data_format.h_axis();
let axis_in_kernel = match op.kernel_format {
tract_core::ops::cnn::KernelFormat::OIHW => 2 + geo_axis,
tract_core::ops::cnn::KernelFormat::HWIO => geo_axis,
};
(op.kernel.shape()[axis_in_kernel] - 1) * op.pool_spec.dilation(geo_axis)
}
impl PulsedOp for DeconvUnary {
fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> {
let mut fact = inputs[0].clone();
let mut stream = fact.stream.as_mut().unwrap();
let overlap = overlap(stream.axis, self);
let geo_axis = stream.axis - self.pool_spec.data_format.h_axis();
let stride = self.pool_spec.stride(geo_axis);
let mut output_shape = tract_core::ops::cnn::deconv::output_shape(
&self.pool_spec,
&inputs[0].streaming_shape(),
&self.adjustments,
)?;
stream.dim = output_shape[stream.axis].clone();
let pulse_len = fact.shape[stream.axis].clone() * stride;
output_shape[stream.axis] = pulse_len + overlap;
fact.shape = output_shape.into();
if let Some(c) = self.pool_spec.output_channel_override {
let c_axis = self.pool_spec.data_format.shape(&fact.shape)?.c_axis();
fact.shape.set(c_axis, c.to_dim())
}
Ok(tvec!(fact))
}pub fn to_streaming_fact(&self) -> TypedFact
Trait Implementations§
source§impl Clone for PulsedFact
impl Clone for PulsedFact
source§fn clone(&self) -> PulsedFact
fn clone(&self) -> PulsedFact
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for PulsedFact
impl Debug for PulsedFact
source§impl Fact for PulsedFact
impl Fact for PulsedFact
fn to_typed_fact(&self) -> TractResult<Cow<'_, TypedFact>>
fn same_as(&self, other: &dyn Fact) -> bool
source§fn compatible_with(&self, other: &dyn Fact) -> bool
fn compatible_with(&self, other: &dyn Fact) -> bool
Ensure that self is same type as another fact or a subtype
fn datum_type(&self) -> Option<DatumType>
fn matches(
&self,
t: &Tensor,
symbols: Option<&SymbolValues>
) -> Result<bool, Error>
source§impl<'a> From<&'a PulsedFact> for TypedFact
impl<'a> From<&'a PulsedFact> for TypedFact
source§fn from(fact: &'a PulsedFact) -> TypedFact
fn from(fact: &'a PulsedFact) -> TypedFact
Converts to this type from the input type.
source§impl From<PulsedFact> for TypedFact
impl From<PulsedFact> for TypedFact
source§fn from(fact: PulsedFact) -> TypedFact
fn from(fact: PulsedFact) -> TypedFact
Converts to this type from the input type.
source§impl Hash for PulsedFact
impl Hash for PulsedFact
source§impl PartialEq<PulsedFact> for PulsedFact
impl PartialEq<PulsedFact> for PulsedFact
source§fn eq(&self, other: &PulsedFact) -> bool
fn eq(&self, other: &PulsedFact) -> bool
This method tests for
self and other values to be equal, and is used
by ==.source§impl SpecialOps<PulsedFact, Box<dyn PulsedOp + 'static, Global>> for PulsedModel
impl SpecialOps<PulsedFact, Box<dyn PulsedOp + 'static, Global>> for PulsedModel
fn is_source(op: &Box<dyn PulsedOp>) -> bool
fn create_source(&self, fact: PulsedFact) -> Box<dyn PulsedOp>
fn create_dummy(&self) -> Box<dyn PulsedOp>
fn wire_node(
&mut self,
name: impl Into<String>,
op: impl Into<Box<dyn PulsedOp>>,
inputs: &[OutletId]
) -> TractResult<TVec<OutletId>>
impl Eq for PulsedFact
impl StructuralEq for PulsedFact
impl StructuralPartialEq for PulsedFact
Auto Trait Implementations§
impl RefUnwindSafe for PulsedFact
impl Send for PulsedFact
impl Sync for PulsedFact
impl Unpin for PulsedFact
impl UnwindSafe for PulsedFact
Blanket Implementations§
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.