Struct tract_pulse::internal::ShapeFact[]

pub struct ShapeFact(_);
Expand description

Fully determined dimension of a tensor.

Tensors in tract can have one streaming dimension. TDim generalize the regular tensor dimensions (usize) to arithmetic expressions of S, the (sometimes hypothetical) tensor length on the streaming axis.

Implementations

impl ShapeFact

pub fn rank(&self) -> usize

Rank of the tensor.

pub fn insert_axis(&mut self, axis: usize) -> Result<(), Error>

pub fn remove_axis(&mut self, axis: usize) -> Result<(), Error>

pub fn set(&mut self, ix: usize, dim: TDim)

pub fn from_dims<D, T>(it: T) -> ShapeFact where
    T: IntoIterator<Item = D>,
    D: ToDim

Methods from Deref<Target = Dims>

pub fn as_concrete(&self) -> Option<&[usize]>

Shape of the tensor, unless it has symbolic dimensions.

pub fn is_concrete(&self) -> bool

Do we have a symbol-less value ?

pub fn iter(&'a self) -> impl Iterator<Item = TDim> + 'a

Iterator over dimension of the shape.

pub fn to_tvec(&self) -> SmallVec<[TDim; 4]>

Convert the shape to an array of extended dimensions.

pub fn eval_to_usize(
    &self,
    values: &SymbolValues
) -> Result<Cow<'_, SmallVec<[usize; 4]>>, Error>

pub fn eval_to_isize(
    &self,
    values: &SymbolValues
) -> Result<SmallVec<[isize; 4]>, Error>

Methods from Deref<Target = [TDim]>

pub const fn len(&self) -> usize1.0.0 (const: 1.39.0)[src]

Returns the number of elements in the slice.

Examples

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

pub const fn is_empty(&self) -> bool1.0.0 (const: 1.39.0)[src]

Returns true if the slice has a length of 0.

Examples

let a = [1, 2, 3];
assert!(!a.is_empty());

pub const fn first(&self) -> Option<&T>1.0.0[src]

Returns the first element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

pub const fn split_first(&self) -> Option<(&T, &[T])>1.5.0[src]

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}

pub const fn split_last(&self) -> Option<(&T, &[T])>1.5.0[src]

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}

pub const fn last(&self) -> Option<&T>1.0.0[src]

Returns the last element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
    I: SliceIndex<[T]>, 
1.0.0[src]

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));

pub unsafe fn get_unchecked<I>(
    &self,
    index: I
) -> &<I as SliceIndex<[T]>>::Output where
    I: SliceIndex<[T]>, 
1.0.0[src]

Returns a reference to an element or subslice, without doing bounds checking.

For a safe alternative see get.

Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

Examples

let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}

pub const fn as_ptr(&self) -> *const T1.0.0 (const: 1.32.0)[src]

Returns a raw pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
    }
}

pub const fn as_ptr_range(&self) -> Range<*const T>

Notable traits for Range<A>

impl<A> Iterator for Range<A> where
    A: Step
type Item = A;
1.48.0[src]

Returns the two raw pointers spanning the slice.

The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.

See as_ptr for warnings on using these pointers. The end pointer requires extra caution, as it does not point to a valid element in the slice.

This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.

It can also be useful to check if a pointer to an element refers to an element of this slice:

let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;

assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));

pub fn iter(&self) -> Iter<'_, T>

Notable traits for Iter<'a, T>

impl<'a, T> Iterator for Iter<'a, T> type Item = &'a T;
1.0.0[src]

Returns an iterator over the slice.

Examples

let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);

pub fn windows(&self, size: usize) -> Windows<'_, T>

Notable traits for Windows<'a, T>

impl<'a, T> Iterator for Windows<'a, T> type Item = &'a [T];
1.0.0[src]

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Examples

let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>

Notable traits for Chunks<'a, T>

impl<'a, T> Iterator for Chunks<'a, T> type Item = &'a [T];
1.0.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks for the same iterator but starting at the end of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());

pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>

Notable traits for ChunksExact<'a, T>

impl<'a, T> Iterator for ChunksExact<'a, T> type Item = &'a [T];
1.31.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See chunks for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact for the same iterator but starting at the end of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);

pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]

Notable traits for &'_ [u8]

impl<'_> Read for &'_ [u8]impl<'_> Write for &'_ mut [u8]
[src]

🔬 This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, assuming that there’s no remainder.

Safety

This may only be called when

  • The slice splits exactly into N-element chunks (aka self.len() % N == 0).
  • N != 0.

Examples

#![feature(slice_as_chunks)]
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
    // SAFETY: 1-element chunks never have remainder
    unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
    // SAFETY: The slice length (6) is a multiple of 3
    unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);

// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed

pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])[src]

🔬 This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the beginning of the slice, and a remainder slice with length strictly less than N.

Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

Examples

#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);

pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])[src]

🔬 This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the end of the slice, and a remainder slice with length strictly less than N.

Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

Examples

#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);

pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>

Notable traits for ArrayChunks<'a, T, N>

impl<'a, T, const N: usize> Iterator for ArrayChunks<'a, T, N> type Item = &'a [T; N];
[src]

🔬 This is a nightly-only experimental API. (array_chunks)

Returns an iterator over N elements of the slice at a time, starting at the beginning of the slice.

The chunks are array references and do not overlap. If N does not divide the length of the slice, then the last up to N-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

This method is the const generic equivalent of chunks_exact.

Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

Examples

#![feature(array_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.array_chunks();
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);

pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>

Notable traits for ArrayWindows<'a, T, N>

impl<'a, T, const N: usize> Iterator for ArrayWindows<'a, T, N> type Item = &'a [T; N];
[src]

🔬 This is a nightly-only experimental API. (array_windows)

Returns an iterator over overlapping windows of N elements of a slice, starting at the beginning of the slice.

This is the const generic equivalent of windows.

If N is greater than the size of the slice, it will return no windows.

Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

Examples

#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());

pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>

Notable traits for RChunks<'a, T>

impl<'a, T> Iterator for RChunks<'a, T> type Item = &'a [T];
1.31.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks for the same iterator but starting at the beginning of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());

pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>

Notable traits for RChunksExact<'a, T>

impl<'a, T> Iterator for RChunksExact<'a, T> type Item = &'a [T];
1.31.0[src]

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See rchunks for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact for the same iterator but starting at the beginning of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);

pub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F>

Notable traits for GroupBy<'a, T, P>

impl<'a, T, P> Iterator for GroupBy<'a, T, P> where
    T: 'a,
    P: FnMut(&T, &T) -> bool
type Item = &'a [T];
where
    F: FnMut(&T, &T) -> bool
[src]

🔬 This is a nightly-only experimental API. (slice_group_by)

Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.

The predicate is called on two elements following themselves, it means the predicate is called on slice[0] and slice[1] then on slice[1] and slice[2] and so on.

Examples

#![feature(slice_group_by)]

let slice = &[1, 1, 1, 3, 3, 2, 2, 2];

let mut iter = slice.group_by(|a, b| a == b);

assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);

This method can be used to extract the sorted subslices:

#![feature(slice_group_by)]

let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];

let mut iter = slice.group_by(|a, b| a <= b);

assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);

pub fn split_at(&self, mid: usize) -> (&[T], &[T])1.0.0[src]

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_at(0);
   assert_eq!(left, []);
   assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(2);
    assert_eq!(left, [1, 2]);
    assert_eq!(right, [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(6);
    assert_eq!(left, [1, 2, 3, 4, 5, 6]);
    assert_eq!(right, []);
}

pub fn split<F>(&self, pred: F) -> Split<'_, T, F>

Notable traits for Split<'a, T, P>

impl<'a, T, P> Iterator for Split<'a, T, P> where
    P: FnMut(&T) -> bool
type Item = &'a [T];
where
    F: FnMut(&T) -> bool
1.0.0[src]

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>

Notable traits for SplitInclusive<'a, T, P>

impl<'a, T, P> Iterator for SplitInclusive<'a, T, P> where
    P: FnMut(&T) -> bool
type Item = &'a [T];
where
    F: FnMut(&T) -> bool
1.51.0[src]

Returns an iterator over subslices separated by elements that match pred. The matched element is contained in the end of the previous subslice as a terminator.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.

let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());

pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>

Notable traits for RSplit<'a, T, P>

impl<'a, T, P> Iterator for RSplit<'a, T, P> where
    P: FnMut(&T) -> bool
type Item = &'a [T];
where
    F: FnMut(&T) -> bool
1.27.0[src]

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);

pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>

Notable traits for SplitN<'a, T, P>

impl<'a, T, P> Iterator for SplitN<'a, T, P> where
    P: FnMut(&T) -> bool
type Item = &'a [T];
where
    F: FnMut(&T) -> bool
1.0.0[src]

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e., [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>

Notable traits for RSplitN<'a, T, P>

impl<'a, T, P> Iterator for RSplitN<'a, T, P> where
    P: FnMut(&T) -> bool
type Item = &'a [T];
where
    F: FnMut(&T) -> bool
1.0.0[src]

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e., [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

pub fn contains(&self, x: &T) -> bool where
    T: PartialEq<T>, 
1.0.0[src]

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

If you do not have a &T, but some other value that you can compare with one (for example, String implements PartialEq<str>), you can use iter().any:

let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));

pub fn starts_with(&self, needle: &[T]) -> bool where
    T: PartialEq<T>, 
1.0.0[src]

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));

pub fn ends_with(&self, needle: &[T]) -> bool where
    T: PartialEq<T>, 
1.0.0[src]

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));

#[must_use = "returns the subslice without modifying the original"]
pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]> where
    T: PartialEq<T>,
    P: SlicePattern<Item = T> + ?Sized
1.51.0[src]

Returns a subslice with the prefix removed.

If the slice starts with prefix, returns the subslice after the prefix, wrapped in Some. If prefix is empty, simply returns the original slice.

If the slice does not start with prefix, returns None.

Examples

let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);

let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
           Some(b"llo".as_ref()));

#[must_use = "returns the subslice without modifying the original"]
pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]> where
    T: PartialEq<T>,
    P: SlicePattern<Item = T> + ?Sized
1.51.0[src]

Returns a subslice with the suffix removed.

If the slice ends with suffix, returns the subslice before the suffix, wrapped in Some. If suffix is empty, simply returns the original slice.

If the slice does not end with suffix, returns None.

Examples

let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);

Binary searches this sorted slice for a given element.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search_by, binary_search_by_key, and partition_point.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });

If you want to insert an item to a sorted vector, while maintaining sort order:

let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.binary_search(&num).unwrap_or_else(|x| x);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);

pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
    F: FnMut(&'a T) -> Ordering
1.0.0[src]

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search, binary_search_by_key, and partition_point.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });

pub fn binary_search_by_key<'a, B, F>(
    &'a self,
    b: &B,
    f: F
) -> Result<usize, usize> where
    F: FnMut(&'a T) -> B,
    B: Ord
1.10.0[src]

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search, binary_search_by, and partition_point.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });

pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])1.30.0[src]

Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method may make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness. It is permissible for all of the input data to be returned as the prefix or suffix slice.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

Safety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

Examples

Basic usage:

unsafe {
    let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}

pub fn is_sorted(&self) -> bool where
    T: PartialOrd<T>, 
[src]

🔬 This is a nightly-only experimental API. (is_sorted)

new API

Checks if the elements of this slice are sorted.

That is, for each element a and its following element b, a <= b must hold. If the slice yields exactly zero or one element, true is returned.

Note that if Self::Item is only PartialOrd, but not Ord, the above definition implies that this function returns false if any two consecutive items are not comparable.

Examples

#![feature(is_sorted)]
let empty: [i32; 0] = [];

assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());

pub fn is_sorted_by<F>(&self, compare: F) -> bool where
    F: FnMut(&T, &T) -> Option<Ordering>, 
[src]

🔬 This is a nightly-only experimental API. (is_sorted)

new API

Checks if the elements of this slice are sorted using the given comparator function.

Instead of using PartialOrd::partial_cmp, this function uses the given compare function to determine the ordering of two elements. Apart from that, it’s equivalent to is_sorted; see its documentation for more information.

pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool where
    F: FnMut(&T) -> K,
    K: PartialOrd<K>, 
[src]

🔬 This is a nightly-only experimental API. (is_sorted)

new API

Checks if the elements of this slice are sorted using the given key extraction function.

Instead of comparing the slice’s elements directly, this function compares the keys of the elements, as determined by f. Apart from that, it’s equivalent to is_sorted; see its documentation for more information.

Examples

#![feature(is_sorted)]

assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));

pub fn partition_point<P>(&self, pred: P) -> usize where
    P: FnMut(&T) -> bool
1.52.0[src]

Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).

The slice is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the slice and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).

If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.

See also binary_search, binary_search_by, and binary_search_by_key.

Examples

let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);

assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));

pub fn is_ascii(&self) -> bool1.23.0[src]

Checks if all bytes in this slice are within the ASCII range.

pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool1.23.0[src]

Checks that two slices are an ASCII case-insensitive match.

Same as to_ascii_lowercase(a) == to_ascii_lowercase(b), but without allocating and copying temporaries.

pub fn escape_ascii(&self) -> EscapeAscii<'_>

Notable traits for EscapeAscii<'a>

impl<'a> Iterator for EscapeAscii<'a> type Item = u8;
[src]

🔬 This is a nightly-only experimental API. (inherent_ascii_escape)

Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.

Examples

#![feature(inherent_ascii_escape)]

let s = b"0\t\r\n'\"\\\x9d";
let escaped = s.escape_ascii().to_string();
assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");

pub fn to_vec(&self) -> Vec<T, Global>

Notable traits for Vec<u8, A>

impl<A> Write for Vec<u8, A> where
    A: Allocator
where
    T: Clone
1.0.0[src]

Copies self into a new Vec.

Examples

let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.

pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>

Notable traits for Vec<u8, A>

impl<A> Write for Vec<u8, A> where
    A: Allocator
where
    T: Clone,
    A: Allocator
[src]

🔬 This is a nightly-only experimental API. (allocator_api)

Copies self into a new Vec with an allocator.

Examples

#![feature(allocator_api)]

use std::alloc::System;

let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.

pub fn repeat(&self, n: usize) -> Vec<T, Global>

Notable traits for Vec<u8, A>

impl<A> Write for Vec<u8, A> where
    A: Allocator
where
    T: Copy
1.40.0[src]

Creates a vector by repeating a slice n times.

Panics

This function will panic if the capacity would overflow.

Examples

Basic usage:

assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);

A panic upon overflow:

// this will panic at runtime
b"0123456789abcdef".repeat(usize::MAX);

pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output

Notable traits for &'_ [u8]

impl<'_> Read for &'_ [u8]impl<'_> Write for &'_ mut [u8]
where
    Item: ?Sized,
    [T]: Concat<Item>, 
1.0.0[src]

Flattens a slice of T into a single value Self::Output.

Examples

assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);

pub fn join<Separator>(
    &self,
    sep: Separator
) -> <[T] as Join<Separator>>::Output

Notable traits for &'_ [u8]

impl<'_> Read for &'_ [u8]impl<'_> Write for &'_ mut [u8]
where
    [T]: Join<Separator>, 
1.3.0[src]

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

Examples

assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);

pub fn connect<Separator>(
    &self,
    sep: Separator
) -> <[T] as Join<Separator>>::Output

Notable traits for &'_ [u8]

impl<'_> Read for &'_ [u8]impl<'_> Write for &'_ mut [u8]
where
    [T]: Join<Separator>, 
1.0.0[src]

👎 Deprecated since 1.3.0:

renamed to join

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

Examples

assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);

pub fn to_ascii_uppercase(&self) -> Vec<u8, Global>

Notable traits for Vec<u8, A>

impl<A> Write for Vec<u8, A> where
    A: Allocator
1.23.0[src]

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.

ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

pub fn to_ascii_lowercase(&self) -> Vec<u8, Global>

Notable traits for Vec<u8, A>

impl<A> Write for Vec<u8, A> where
    A: Allocator
1.23.0[src]

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.

ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

Trait Implementations

impl Clone for ShapeFact

pub fn clone(&self) -> ShapeFact

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl Debug for ShapeFact

pub fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more

impl Deref for ShapeFact

type Target = Dims

The resulting type after dereferencing.

pub fn deref(&self) -> &Dims

Dereferences the value.

impl<D, T> From<T> for ShapeFact where
    T: IntoIterator<Item = D>,
    D: ToDim

pub fn from(it: T) -> ShapeFact

Performs the conversion.

impl Hash for ShapeFact

pub fn hash<__H>(&self, state: &mut __H) where
    __H: Hasher

Feeds this value into the given Hasher. Read more

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given Hasher. Read more

impl PartialEq<ShapeFact> for ShapeFact

pub fn eq(&self, other: &ShapeFact) -> bool

This method tests for self and other values to be equal, and is used by ==. Read more

pub fn ne(&self, other: &ShapeFact) -> bool

This method tests for !=.

impl<T> PartialEq<T> for ShapeFact where
    T: AsRef<[usize]>, 

pub fn eq(&self, other: &T) -> bool

This method tests for self and other values to be equal, and is used by ==. Read more

#[must_use]
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests for !=.

impl StreamFact for ShapeFact[src]

impl StructuralPartialEq for ShapeFact

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

pub fn type_id(&self) -> TypeId[src]

Gets the TypeId of self. Read more

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

pub fn borrow(&self) -> &T[src]

Immutably borrows from an owned value. Read more

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

pub fn borrow_mut(&mut self) -> &mut T[src]

Mutably borrows from an owned value. Read more

impl<T> Conv for T

fn conv<T>(self) -> T where
    Self: Into<T>, 

Converts self into T using Into<T>. Read more

impl<T> Conv for T

fn conv<T>(self) -> T where
    Self: Into<T>, 

Converts self into a target type. Read more

impl<T> Downcast for T where
    T: Any
[src]

pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>

Notable traits for Box<R, Global>

impl<R> Read for Box<R, Global> where
    R: Read + ?Sized
impl<W> Write for Box<W, Global> where
    W: Write + ?Sized
impl<F, A> Future for Box<F, A> where
    A: Allocator + 'static,
    F: Future + Unpin + ?Sized
type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
    A: Allocator,
    I: Iterator + ?Sized
type Item = <I as Iterator>::Item;
[src]

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more

pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>[src]

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more

pub fn as_any(&self) -> &(dyn Any + 'static)[src]

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s. Read more

pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)[src]

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s. Read more

impl<T> DowncastSync for T where
    T: Any + Send + Sync
[src]

pub fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + 'static + Sync + Send>[src]

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait. Read more

impl<T> DynClone for T where
    T: Clone
[src]

pub fn __clone_box(&self, Private) -> *mut ()[src]

impl<T> FmtForward for T

fn fmt_binary(self) -> FmtBinary<Self> where
    Self: Binary

Causes self to use its Binary implementation when Debug-formatted.

fn fmt_display(self) -> FmtDisplay<Self> where
    Self: Display

Causes self to use its Display implementation when Debug-formatted. Read more

fn fmt_lower_exp(self) -> FmtLowerExp<Self> where
    Self: LowerExp

Causes self to use its LowerExp implementation when Debug-formatted. Read more

fn fmt_lower_hex(self) -> FmtLowerHex<Self> where
    Self: LowerHex

Causes self to use its LowerHex implementation when Debug-formatted. Read more

fn fmt_octal(self) -> FmtOctal<Self> where
    Self: Octal

Causes self to use its Octal implementation when Debug-formatted.

fn fmt_pointer(self) -> FmtPointer<Self> where
    Self: Pointer

Causes self to use its Pointer implementation when Debug-formatted. Read more

fn fmt_upper_exp(self) -> FmtUpperExp<Self> where
    Self: UpperExp

Causes self to use its UpperExp implementation when Debug-formatted. Read more

fn fmt_upper_hex(self) -> FmtUpperHex<Self> where
    Self: UpperHex

Causes self to use its UpperHex implementation when Debug-formatted. Read more

impl<T> From<T> for T[src]

pub fn from(t: T) -> T[src]

Performs the conversion.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

pub fn into(self) -> U[src]

Performs the conversion.

impl<T> Pipe for T where
    T: ?Sized

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R

Pipes by value. This is generally the method you want to use. Read more

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R where
    R: 'a, 

Borrows self and passes that borrow into the pipe function. Read more

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R where
    R: 'a, 

Mutably borrows self and passes that borrow into the pipe function. Read more

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R where
    Self: Borrow<B>,
    B: 'a + ?Sized,
    R: 'a, 

Borrows self, then passes self.borrow() into the pipe function. Read more

fn pipe_borrow_mut<'a, B, R>(
    &'a mut self,
    func: impl FnOnce(&'a mut B) -> R
) -> R where
    Self: BorrowMut<B>,
    B: 'a + ?Sized,
    R: 'a, 

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R where
    Self: AsRef<U>,
    R: 'a,
    U: 'a + ?Sized

Borrows self, then passes self.as_ref() into the pipe function.

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R where
    Self: AsMut<U>,
    R: 'a,
    U: 'a + ?Sized

Mutably borrows self, then passes self.as_mut() into the pipe function. Read more

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
    Self: Deref<Target = T>,
    T: 'a + ?Sized,
    R: 'a, 

Borrows self, then passes self.deref() into the pipe function.

fn pipe_deref_mut<'a, T, R>(
    &'a mut self,
    func: impl FnOnce(&'a mut T) -> R
) -> R where
    Self: DerefMut<Target = T> + Deref,
    T: 'a + ?Sized,
    R: 'a, 

Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more

impl<T> Pipe for T

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R

Pipes a value into a function that cannot ordinarily be called in suffix position. Read more

impl<T> PipeAsRef for T

fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
    Self: AsRef<T>,
    T: 'a,
    R: 'a, 

Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more

fn pipe_as_mut<'a, T, R>(&'a mut self, func: impl FnOnce(&'a mut T) -> R) -> R where
    Self: AsMut<T>,
    T: 'a,
    R: 'a, 

Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more

impl<T> PipeBorrow for T

fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
    Self: Borrow<T>,
    T: 'a,
    R: 'a, 

Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more

fn pipe_borrow_mut<'a, T, R>(
    &'a mut self,
    func: impl FnOnce(&'a mut T) -> R
) -> R where
    Self: BorrowMut<T>,
    T: 'a,
    R: 'a, 

Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more

impl<T> PipeDeref for T

fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
    Self: Deref,
    R: 'a, 

Pipes a dereference into a function that cannot normally be called in suffix position. Read more

fn pipe_deref_mut<'a, R>(
    &'a mut self,
    func: impl FnOnce(&'a mut Self::Target) -> R
) -> R where
    Self: DerefMut,
    R: 'a, 

Pipes a mutable dereference into a function that cannot normally be called in suffix position. Read more

impl<T> PipeRef for T

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R where
    R: 'a, 

Pipes a reference into a function that cannot ordinarily be called in suffix position. Read more

fn pipe_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R where
    R: 'a, 

Pipes a mutable reference into a function that cannot ordinarily be called in suffix position. Read more

impl<T> Tap for T

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self where
    Self: Borrow<B>,
    B: ?Sized

Immutable access to the Borrow<B> of a value. Read more

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self where
    Self: BorrowMut<B>,
    B: ?Sized

Mutable access to the BorrowMut<B> of a value. Read more

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self where
    Self: AsRef<R>,
    R: ?Sized

Immutable access to the AsRef<R> view of a value. Read more

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self where
    Self: AsMut<R>,
    R: ?Sized

Mutable access to the AsMut<R> view of a value. Read more

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self where
    Self: Deref<Target = T>,
    T: ?Sized

Immutable access to the Deref::Target of a value. Read more

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self where
    Self: DerefMut<Target = T> + Deref,
    T: ?Sized

Mutable access to the Deref::Target of a value. Read more

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds. Read more

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self where
    Self: Borrow<B>,
    B: ?Sized

Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self where
    Self: BorrowMut<B>,
    B: ?Sized

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self where
    Self: AsRef<R>,
    R: ?Sized

Calls .tap_ref() only in debug builds, and is erased in release builds. Read more

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self where
    Self: AsMut<R>,
    R: ?Sized

Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self where
    Self: Deref<Target = T>,
    T: ?Sized

Calls .tap_deref() only in debug builds, and is erased in release builds. Read more

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self where
    Self: DerefMut<Target = T> + Deref,
    T: ?Sized

Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more

impl<T> Tap for T

fn tap<F, R>(self, func: F) -> Self where
    F: FnOnce(&Self) -> R, 

Provides immutable access for inspection. Read more

fn tap_dbg<F, R>(self, func: F) -> Self where
    F: FnOnce(&Self) -> R, 

Calls tap in debug builds, and does nothing in release builds.

fn tap_mut<F, R>(self, func: F) -> Self where
    F: FnOnce(&mut Self) -> R, 

Provides mutable access for modification. Read more

fn tap_mut_dbg<F, R>(self, func: F) -> Self where
    F: FnOnce(&mut Self) -> R, 

Calls tap_mut in debug builds, and does nothing in release builds.

impl<T, U> TapAsRef<U> for T where
    U: ?Sized

fn tap_ref<F, R>(self, func: F) -> Self where
    Self: AsRef<T>,
    F: FnOnce(&T) -> R, 

Provides immutable access to the reference for inspection.

fn tap_ref_dbg<F, R>(self, func: F) -> Self where
    Self: AsRef<T>,
    F: FnOnce(&T) -> R, 

Calls tap_ref in debug builds, and does nothing in release builds.

fn tap_ref_mut<F, R>(self, func: F) -> Self where
    Self: AsMut<T>,
    F: FnOnce(&mut T) -> R, 

Provides mutable access to the reference for modification.

fn tap_ref_mut_dbg<F, R>(self, func: F) -> Self where
    Self: AsMut<T>,
    F: FnOnce(&mut T) -> R, 

Calls tap_ref_mut in debug builds, and does nothing in release builds.

impl<T, U> TapBorrow<U> for T where
    U: ?Sized

fn tap_borrow<F, R>(self, func: F) -> Self where
    Self: Borrow<T>,
    F: FnOnce(&T) -> R, 

Provides immutable access to the borrow for inspection. Read more

fn tap_borrow_dbg<F, R>(self, func: F) -> Self where
    Self: Borrow<T>,
    F: FnOnce(&T) -> R, 

Calls tap_borrow in debug builds, and does nothing in release builds.

fn tap_borrow_mut<F, R>(self, func: F) -> Self where
    Self: BorrowMut<T>,
    F: FnOnce(&mut T) -> R, 

Provides mutable access to the borrow for modification.

fn tap_borrow_mut_dbg<F, R>(self, func: F) -> Self where
    Self: BorrowMut<T>,
    F: FnOnce(&mut T) -> R, 

Calls tap_borrow_mut in debug builds, and does nothing in release builds. Read more

impl<T> TapDeref for T

fn tap_deref<F, R>(self, func: F) -> Self where
    Self: Deref,
    F: FnOnce(&Self::Target) -> R, 

Immutably dereferences self for inspection.

fn tap_deref_dbg<F, R>(self, func: F) -> Self where
    Self: Deref,
    F: FnOnce(&Self::Target) -> R, 

Calls tap_deref in debug builds, and does nothing in release builds.

fn tap_deref_mut<F, R>(self, func: F) -> Self where
    Self: DerefMut,
    F: FnOnce(&mut Self::Target) -> R, 

Mutably dereferences self for modification.

fn tap_deref_mut_dbg<F, R>(self, func: F) -> Self where
    Self: DerefMut,
    F: FnOnce(&mut Self::Target) -> R, 

Calls tap_deref_mut in debug builds, and does nothing in release builds. Read more

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

pub fn to_owned(&self) -> T[src]

Creates owned data from borrowed data, usually by cloning. Read more

pub fn clone_into(&self, target: &mut T)[src]

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl<T> TryConv for T

fn try_conv<T>(self) -> Result<T, Self::Error> where
    Self: TryInto<T>, 

Attempts to convert self into T using TryInto<T>. Read more

impl<T> TryConv for T

fn try_conv<T>(self) -> Result<T, Self::Error> where
    Self: TryInto<T>, 

Attempts to convert self into a target type. Read more

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]

Performs the conversion.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]

Performs the conversion.