Trait tract_pulse::internal::tract_core::ops::nn::tract_num_traits::Float [−][src]
pub trait Float: Num + Copy + NumCast + PartialOrd<Self> + Neg<Output = Self> {}Show methods
fn nan() -> Self; fn infinity() -> Self; fn neg_infinity() -> Self; fn neg_zero() -> Self; fn min_value() -> Self; fn min_positive_value() -> Self; fn max_value() -> Self; fn is_nan(self) -> bool; fn is_infinite(self) -> bool; fn is_finite(self) -> bool; fn is_normal(self) -> bool; fn classify(self) -> FpCategory; fn floor(self) -> Self; fn ceil(self) -> Self; fn round(self) -> Self; fn trunc(self) -> Self; fn fract(self) -> Self; fn abs(self) -> Self; fn signum(self) -> Self; fn is_sign_positive(self) -> bool; fn is_sign_negative(self) -> bool; fn mul_add(self, a: Self, b: Self) -> Self; fn recip(self) -> Self; fn powi(self, n: i32) -> Self; fn powf(self, n: Self) -> Self; fn sqrt(self) -> Self; fn exp(self) -> Self; fn exp2(self) -> Self; fn ln(self) -> Self; fn log(self, base: Self) -> Self; fn log2(self) -> Self; fn log10(self) -> Self; fn max(self, other: Self) -> Self; fn min(self, other: Self) -> Self; fn abs_sub(self, other: Self) -> Self; fn cbrt(self) -> Self; fn hypot(self, other: Self) -> Self; fn sin(self) -> Self; fn cos(self) -> Self; fn tan(self) -> Self; fn asin(self) -> Self; fn acos(self) -> Self; fn atan(self) -> Self; fn atan2(self, other: Self) -> Self; fn sin_cos(self) -> (Self, Self); fn exp_m1(self) -> Self; fn ln_1p(self) -> Self; fn sinh(self) -> Self; fn cosh(self) -> Self; fn tanh(self) -> Self; fn asinh(self) -> Self; fn acosh(self) -> Self; fn atanh(self) -> Self; fn integer_decode(self) -> (u64, i16, i8); fn epsilon() -> Self { ... } fn to_degrees(self) -> Self { ... } fn to_radians(self) -> Self { ... }
Expand description
Generic trait for floating point numbers
This trait is only available with the std feature, or with the libm feature otherwise.
Required methods
fn nan() -> Self[src]
Expand description
Returns the NaN value.
use num_traits::Float; let nan: f32 = Float::nan(); assert!(nan.is_nan());
fn infinity() -> Self[src]
Expand description
Returns the infinite value.
use num_traits::Float; use std::f32; let infinity: f32 = Float::infinity(); assert!(infinity.is_infinite()); assert!(!infinity.is_finite()); assert!(infinity > f32::MAX);
fn neg_infinity() -> Self[src]
Expand description
Returns the negative infinite value.
use num_traits::Float; use std::f32; let neg_infinity: f32 = Float::neg_infinity(); assert!(neg_infinity.is_infinite()); assert!(!neg_infinity.is_finite()); assert!(neg_infinity < f32::MIN);
fn neg_zero() -> Self[src]
Expand description
Returns -0.0.
use num_traits::{Zero, Float}; let inf: f32 = Float::infinity(); let zero: f32 = Zero::zero(); let neg_zero: f32 = Float::neg_zero(); assert_eq!(zero, neg_zero); assert_eq!(7.0f32/inf, zero); assert_eq!(zero * 10.0, zero);
fn min_value() -> Self[src]
Expand description
Returns the smallest finite value that this type can represent.
use num_traits::Float; use std::f64; let x: f64 = Float::min_value(); assert_eq!(x, f64::MIN);
fn min_positive_value() -> Self[src]
Expand description
Returns the smallest positive, normalized value that this type can represent.
use num_traits::Float; use std::f64; let x: f64 = Float::min_positive_value(); assert_eq!(x, f64::MIN_POSITIVE);
fn max_value() -> Self[src]
Expand description
Returns the largest finite value that this type can represent.
use num_traits::Float; use std::f64; let x: f64 = Float::max_value(); assert_eq!(x, f64::MAX);
fn is_nan(self) -> bool[src]
Expand description
Returns true if this value is NaN and false otherwise.
use num_traits::Float; use std::f64; let nan = f64::NAN; let f = 7.0; assert!(nan.is_nan()); assert!(!f.is_nan());
fn is_infinite(self) -> bool[src]
Expand description
Returns true if this value is positive infinity or negative infinity and
false otherwise.
use num_traits::Float; use std::f32; let f = 7.0f32; let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let nan: f32 = f32::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
fn is_finite(self) -> bool[src]
Expand description
Returns true if this number is neither infinite nor NaN.
use num_traits::Float; use std::f32; let f = 7.0f32; let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let nan: f32 = f32::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
fn is_normal(self) -> bool[src]
Expand description
Returns true if the number is neither zero, infinite,
subnormal, or NaN.
use num_traits::Float; use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
fn classify(self) -> FpCategory[src]
Expand description
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use num_traits::Float; use std::num::FpCategory; use std::f32; let num = 12.4f32; let inf = f32::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
fn floor(self) -> Self[src]
Expand description
Returns the largest integer less than or equal to a number.
use num_traits::Float; let f = 3.99; let g = 3.0; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);
fn ceil(self) -> Self[src]
Expand description
Returns the smallest integer greater than or equal to a number.
use num_traits::Float; let f = 3.01; let g = 4.0; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);
fn round(self) -> Self[src]
Expand description
Returns the nearest integer to a number. Round half-way cases away from
0.0.
use num_traits::Float; let f = 3.3; let g = -3.3; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);
fn trunc(self) -> Self[src]
Expand description
Return the integer part of a number.
use num_traits::Float; let f = 3.3; let g = -3.7; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);
fn fract(self) -> Self[src]
Expand description
Returns the fractional part of a number.
use num_traits::Float; let x = 3.5; let y = -3.5; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn abs(self) -> Self[src]
Expand description
Computes the absolute value of self. Returns Float::nan() if the
number is Float::nan().
use num_traits::Float; use std::f64; let x = 3.5; let y = -3.5; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());
fn signum(self) -> Self[src]
Expand description
Returns a number that represents the sign of self.
1.0if the number is positive,+0.0orFloat::infinity()-1.0if the number is negative,-0.0orFloat::neg_infinity()Float::nan()if the number isFloat::nan()
use num_traits::Float; use std::f64; let f = 3.5; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());
fn is_sign_positive(self) -> bool[src]
Expand description
Returns true if self is positive, including +0.0,
Float::infinity(), and since Rust 1.20 also Float::nan().
use num_traits::Float; use std::f64; let neg_nan: f64 = -f64::NAN; let f = 7.0; let g = -7.0; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); assert!(!neg_nan.is_sign_positive());
fn is_sign_negative(self) -> bool[src]
Expand description
Returns true if self is negative, including -0.0,
Float::neg_infinity(), and since Rust 1.20 also -Float::nan().
use num_traits::Float; use std::f64; let nan: f64 = f64::NAN; let f = 7.0; let g = -7.0; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); assert!(!nan.is_sign_negative());
fn mul_add(self, a: Self, b: Self) -> Self[src]
Expand description
Fused multiply-add. Computes (self * a) + b with only one rounding
error, yielding a more accurate result than an unfused multiply-add.
Using mul_add can be more performant than an unfused multiply-add if
the target architecture has a dedicated fma CPU instruction.
use num_traits::Float; let m = 10.0; let x = 4.0; let b = 60.0; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);
fn recip(self) -> Self[src]
Expand description
Take the reciprocal (inverse) of a number, 1/x.
use num_traits::Float; let x = 2.0; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);
fn powi(self, n: i32) -> Self[src]
Expand description
Raise a number to an integer power.
Using this function is generally faster than using powf
use num_traits::Float; let x = 2.0; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);
fn powf(self, n: Self) -> Self[src]
Expand description
Raise a number to a floating point power.
use num_traits::Float; let x = 2.0; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);
fn sqrt(self) -> Self[src]
Expand description
Take the square root of a number.
Returns NaN if self is a negative number.
use num_traits::Float; let positive = 4.0; let negative = -4.0; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());
fn exp(self) -> Self[src]
Expand description
Returns e^(self), (the exponential function).
use num_traits::Float; let one = 1.0; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn exp2(self) -> Self[src]
Expand description
Returns 2^(self).
use num_traits::Float; let f = 2.0; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);
fn ln(self) -> Self[src]
Expand description
Returns the natural logarithm of the number.
use num_traits::Float; let one = 1.0; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log(self, base: Self) -> Self[src]
Expand description
Returns the logarithm of the number with respect to an arbitrary base.
use num_traits::Float; let ten = 10.0; let two = 2.0; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn log2(self) -> Self[src]
Expand description
Returns the base 2 logarithm of the number.
use num_traits::Float; let two = 2.0; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log10(self) -> Self[src]
Expand description
Returns the base 10 logarithm of the number.
use num_traits::Float; let ten = 10.0; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn max(self, other: Self) -> Self[src]
Expand description
Returns the maximum of the two numbers.
use num_traits::Float; let x = 1.0; let y = 2.0; assert_eq!(x.max(y), y);
fn min(self, other: Self) -> Self[src]
Expand description
Returns the minimum of the two numbers.
use num_traits::Float; let x = 1.0; let y = 2.0; assert_eq!(x.min(y), x);
fn abs_sub(self, other: Self) -> Self[src]
Expand description
The positive difference of two numbers.
- If
self <= other:0:0 - Else:
self - other
use num_traits::Float; let x = 3.0; let y = -3.0; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn cbrt(self) -> Self[src]
Expand description
Take the cubic root of a number.
use num_traits::Float; let x = 8.0; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);
fn hypot(self, other: Self) -> Self[src]
Expand description
Calculate the length of the hypotenuse of a right-angle triangle given
legs of length x and y.
use num_traits::Float; let x = 2.0; let y = 3.0; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);
fn sin(self) -> Self[src]
Expand description
Computes the sine of a number (in radians).
use num_traits::Float; use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn cos(self) -> Self[src]
Expand description
Computes the cosine of a number (in radians).
use num_traits::Float; use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn tan(self) -> Self[src]
Expand description
Computes the tangent of a number (in radians).
use num_traits::Float; use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);
fn asin(self) -> Self[src]
Expand description
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use num_traits::Float; use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);
fn acos(self) -> Self[src]
Expand description
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use num_traits::Float; use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);
fn atan(self) -> Self[src]
Expand description
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
use num_traits::Float; let f = 1.0; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn atan2(self, other: Self) -> Self[src]
Expand description
Computes the four quadrant arctangent of self (y) and other (x).
x = 0,y = 0:0x >= 0:arctan(y/x)->[-pi/2, pi/2]y >= 0:arctan(y/x) + pi->(pi/2, pi]y < 0:arctan(y/x) - pi->(-pi, -pi/2)
use num_traits::Float; use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0; let y1 = -3.0; // 135 deg clockwise let x2 = -3.0; let y2 = 3.0; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn sin_cos(self) -> (Self, Self)[src]
Expand description
Simultaneously computes the sine and cosine of the number, x. Returns
(sin(x), cos(x)).
use num_traits::Float; use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_0 < 1e-10);
fn exp_m1(self) -> Self[src]
Expand description
Returns e^(self) - 1 in a way that is accurate even if the
number is close to zero.
use num_traits::Float; let x = 7.0; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);
fn ln_1p(self) -> Self[src]
Expand description
Returns ln(1+n) (natural logarithm) more accurately than if
the operations were performed separately.
use num_traits::Float; use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn sinh(self) -> Self[src]
Expand description
Hyperbolic sine function.
use num_traits::Float; use std::f64; let e = f64::consts::E; let x = 1.0; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);
fn cosh(self) -> Self[src]
Expand description
Hyperbolic cosine function.
use num_traits::Float; use std::f64; let e = f64::consts::E; let x = 1.0; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);
fn tanh(self) -> Self[src]
Expand description
Hyperbolic tangent function.
use num_traits::Float; use std::f64; let e = f64::consts::E; let x = 1.0; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);
fn asinh(self) -> Self[src]
Expand description
Inverse hyperbolic sine function.
use num_traits::Float; let x = 1.0; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn acosh(self) -> Self[src]
Expand description
Inverse hyperbolic cosine function.
use num_traits::Float; let x = 1.0; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn atanh(self) -> Self[src]
Expand description
Inverse hyperbolic tangent function.
use num_traits::Float; use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);
fn integer_decode(self) -> (u64, i16, i8)[src]
Expand description
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent.
use num_traits::Float; let num = 2.0f32; // (8388608, -22, 1) let (mantissa, exponent, sign) = Float::integer_decode(num); let sign_f = sign as f32; let mantissa_f = mantissa as f32; let exponent_f = num.powf(exponent as f32); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference < 1e-10);
Provided methods
fn epsilon() -> Self[src]
Expand description
Returns epsilon, a small positive value.
use num_traits::Float; use std::f64; let x: f64 = Float::epsilon(); assert_eq!(x, f64::EPSILON);
Panics
The default implementation will panic if f32::EPSILON cannot
be cast to Self.
fn to_degrees(self) -> Self[src]
Expand description
Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);
fn to_radians(self) -> Self[src]
Expand description
Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);
Implementations on Foreign Types
impl Float for f64[src]
impl Float for f64[src]pub fn nan() -> f64[src]
pub fn infinity() -> f64[src]
pub fn neg_infinity() -> f64[src]
pub fn neg_zero() -> f64[src]
pub fn min_value() -> f64[src]
pub fn min_positive_value() -> f64[src]
pub fn epsilon() -> f64[src]
pub fn max_value() -> f64[src]
pub fn abs_sub(self, other: f64) -> f64[src]
pub fn integer_decode(self) -> (u64, i16, i8)[src]
pub fn is_nan(self) -> bool[src]
pub fn is_infinite(self) -> bool[src]
pub fn is_finite(self) -> bool[src]
pub fn is_normal(self) -> bool[src]
pub fn classify(self) -> FpCategory[src]
pub fn floor(self) -> f64[src]
pub fn ceil(self) -> f64[src]
pub fn round(self) -> f64[src]
pub fn trunc(self) -> f64[src]
pub fn fract(self) -> f64[src]
pub fn abs(self) -> f64[src]
pub fn signum(self) -> f64[src]
pub fn is_sign_positive(self) -> bool[src]
pub fn is_sign_negative(self) -> bool[src]
pub fn mul_add(self, a: f64, b: f64) -> f64[src]
pub fn recip(self) -> f64[src]
pub fn powi(self, n: i32) -> f64[src]
pub fn powf(self, n: f64) -> f64[src]
pub fn sqrt(self) -> f64[src]
pub fn exp(self) -> f64[src]
pub fn exp2(self) -> f64[src]
pub fn ln(self) -> f64[src]
pub fn log(self, base: f64) -> f64[src]
pub fn log2(self) -> f64[src]
pub fn log10(self) -> f64[src]
pub fn to_degrees(self) -> f64[src]
pub fn to_radians(self) -> f64[src]
pub fn max(self, other: f64) -> f64[src]
pub fn min(self, other: f64) -> f64[src]
pub fn cbrt(self) -> f64[src]
pub fn hypot(self, other: f64) -> f64[src]
pub fn sin(self) -> f64[src]
pub fn cos(self) -> f64[src]
pub fn tan(self) -> f64[src]
pub fn asin(self) -> f64[src]
pub fn acos(self) -> f64[src]
pub fn atan(self) -> f64[src]
pub fn atan2(self, other: f64) -> f64[src]
pub fn sin_cos(self) -> (f64, f64)[src]
pub fn exp_m1(self) -> f64[src]
pub fn ln_1p(self) -> f64[src]
pub fn sinh(self) -> f64[src]
pub fn cosh(self) -> f64[src]
pub fn tanh(self) -> f64[src]
pub fn asinh(self) -> f64[src]
pub fn acosh(self) -> f64[src]
pub fn atanh(self) -> f64[src]
impl Float for f32[src]
impl Float for f32[src]pub fn nan() -> f32[src]
pub fn infinity() -> f32[src]
pub fn neg_infinity() -> f32[src]
pub fn neg_zero() -> f32[src]
pub fn min_value() -> f32[src]
pub fn min_positive_value() -> f32[src]
pub fn epsilon() -> f32[src]
pub fn max_value() -> f32[src]
pub fn abs_sub(self, other: f32) -> f32[src]
pub fn integer_decode(self) -> (u64, i16, i8)[src]
pub fn is_nan(self) -> bool[src]
pub fn is_infinite(self) -> bool[src]
pub fn is_finite(self) -> bool[src]
pub fn is_normal(self) -> bool[src]
pub fn classify(self) -> FpCategory[src]
pub fn floor(self) -> f32[src]
pub fn ceil(self) -> f32[src]
pub fn round(self) -> f32[src]
pub fn trunc(self) -> f32[src]
pub fn fract(self) -> f32[src]
pub fn abs(self) -> f32[src]
pub fn signum(self) -> f32[src]
pub fn is_sign_positive(self) -> bool[src]
pub fn is_sign_negative(self) -> bool[src]
pub fn mul_add(self, a: f32, b: f32) -> f32[src]
pub fn recip(self) -> f32[src]
pub fn powi(self, n: i32) -> f32[src]
pub fn powf(self, n: f32) -> f32[src]
pub fn sqrt(self) -> f32[src]
pub fn exp(self) -> f32[src]
pub fn exp2(self) -> f32[src]
pub fn ln(self) -> f32[src]
pub fn log(self, base: f32) -> f32[src]
pub fn log2(self) -> f32[src]
pub fn log10(self) -> f32[src]
pub fn to_degrees(self) -> f32[src]
pub fn to_radians(self) -> f32[src]
pub fn max(self, other: f32) -> f32[src]
pub fn min(self, other: f32) -> f32[src]
pub fn cbrt(self) -> f32[src]
pub fn hypot(self, other: f32) -> f32[src]
pub fn sin(self) -> f32[src]
pub fn cos(self) -> f32[src]
pub fn tan(self) -> f32[src]
pub fn asin(self) -> f32[src]
pub fn acos(self) -> f32[src]
pub fn atan(self) -> f32[src]
pub fn atan2(self, other: f32) -> f32[src]
pub fn sin_cos(self) -> (f32, f32)[src]
pub fn exp_m1(self) -> f32[src]
pub fn ln_1p(self) -> f32[src]
pub fn sinh(self) -> f32[src]
pub fn cosh(self) -> f32[src]
pub fn tanh(self) -> f32[src]
pub fn asinh(self) -> f32[src]
pub fn acosh(self) -> f32[src]
pub fn atanh(self) -> f32[src]
Implementors
impl Float for f16
impl Float for f16