Trait tract_pulse::internal::tract_core::ops::nn::tract_num_traits::Float[][src]

pub trait Float: Num + Copy + NumCast + PartialOrd<Self> + Neg<Output = Self> {
Show methods fn nan() -> Self;
fn infinity() -> Self;
fn neg_infinity() -> Self;
fn neg_zero() -> Self;
fn min_value() -> Self;
fn min_positive_value() -> Self;
fn max_value() -> Self;
fn is_nan(self) -> bool;
fn is_infinite(self) -> bool;
fn is_finite(self) -> bool;
fn is_normal(self) -> bool;
fn classify(self) -> FpCategory;
fn floor(self) -> Self;
fn ceil(self) -> Self;
fn round(self) -> Self;
fn trunc(self) -> Self;
fn fract(self) -> Self;
fn abs(self) -> Self;
fn signum(self) -> Self;
fn is_sign_positive(self) -> bool;
fn is_sign_negative(self) -> bool;
fn mul_add(self, a: Self, b: Self) -> Self;
fn recip(self) -> Self;
fn powi(self, n: i32) -> Self;
fn powf(self, n: Self) -> Self;
fn sqrt(self) -> Self;
fn exp(self) -> Self;
fn exp2(self) -> Self;
fn ln(self) -> Self;
fn log(self, base: Self) -> Self;
fn log2(self) -> Self;
fn log10(self) -> Self;
fn max(self, other: Self) -> Self;
fn min(self, other: Self) -> Self;
fn abs_sub(self, other: Self) -> Self;
fn cbrt(self) -> Self;
fn hypot(self, other: Self) -> Self;
fn sin(self) -> Self;
fn cos(self) -> Self;
fn tan(self) -> Self;
fn asin(self) -> Self;
fn acos(self) -> Self;
fn atan(self) -> Self;
fn atan2(self, other: Self) -> Self;
fn sin_cos(self) -> (Self, Self);
fn exp_m1(self) -> Self;
fn ln_1p(self) -> Self;
fn sinh(self) -> Self;
fn cosh(self) -> Self;
fn tanh(self) -> Self;
fn asinh(self) -> Self;
fn acosh(self) -> Self;
fn atanh(self) -> Self;
fn integer_decode(self) -> (u64, i16, i8); fn epsilon() -> Self { ... }
fn to_degrees(self) -> Self { ... }
fn to_radians(self) -> Self { ... }
}
Expand description

Generic trait for floating point numbers

This trait is only available with the std feature, or with the libm feature otherwise.

Required methods

fn nan() -> Self[src]

Expand description

Returns the NaN value.

use num_traits::Float;

let nan: f32 = Float::nan();

assert!(nan.is_nan());

fn infinity() -> Self[src]

Expand description

Returns the infinite value.

use num_traits::Float;
use std::f32;

let infinity: f32 = Float::infinity();

assert!(infinity.is_infinite());
assert!(!infinity.is_finite());
assert!(infinity > f32::MAX);

fn neg_infinity() -> Self[src]

Expand description

Returns the negative infinite value.

use num_traits::Float;
use std::f32;

let neg_infinity: f32 = Float::neg_infinity();

assert!(neg_infinity.is_infinite());
assert!(!neg_infinity.is_finite());
assert!(neg_infinity < f32::MIN);

fn neg_zero() -> Self[src]

Expand description

Returns -0.0.

use num_traits::{Zero, Float};

let inf: f32 = Float::infinity();
let zero: f32 = Zero::zero();
let neg_zero: f32 = Float::neg_zero();

assert_eq!(zero, neg_zero);
assert_eq!(7.0f32/inf, zero);
assert_eq!(zero * 10.0, zero);

fn min_value() -> Self[src]

Expand description

Returns the smallest finite value that this type can represent.

use num_traits::Float;
use std::f64;

let x: f64 = Float::min_value();

assert_eq!(x, f64::MIN);

fn min_positive_value() -> Self[src]

Expand description

Returns the smallest positive, normalized value that this type can represent.

use num_traits::Float;
use std::f64;

let x: f64 = Float::min_positive_value();

assert_eq!(x, f64::MIN_POSITIVE);

fn max_value() -> Self[src]

Expand description

Returns the largest finite value that this type can represent.

use num_traits::Float;
use std::f64;

let x: f64 = Float::max_value();
assert_eq!(x, f64::MAX);

fn is_nan(self) -> bool[src]

Expand description

Returns true if this value is NaN and false otherwise.

use num_traits::Float;
use std::f64;

let nan = f64::NAN;
let f = 7.0;

assert!(nan.is_nan());
assert!(!f.is_nan());

fn is_infinite(self) -> bool[src]

Expand description

Returns true if this value is positive infinity or negative infinity and false otherwise.

use num_traits::Float;
use std::f32;

let f = 7.0f32;
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = f32::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());

fn is_finite(self) -> bool[src]

Expand description

Returns true if this number is neither infinite nor NaN.

use num_traits::Float;
use std::f32;

let f = 7.0f32;
let inf: f32 = Float::infinity();
let neg_inf: f32 = Float::neg_infinity();
let nan: f32 = f32::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());

fn is_normal(self) -> bool[src]

Expand description

Returns true if the number is neither zero, infinite, subnormal, or NaN.

use num_traits::Float;
use std::f32;

let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
let max = f32::MAX;
let lower_than_min = 1.0e-40_f32;
let zero = 0.0f32;

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f32::NAN.is_normal());
assert!(!f32::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());

fn classify(self) -> FpCategory[src]

Expand description

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use num_traits::Float;
use std::num::FpCategory;
use std::f32;

let num = 12.4f32;
let inf = f32::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);

fn floor(self) -> Self[src]

Expand description

Returns the largest integer less than or equal to a number.

use num_traits::Float;

let f = 3.99;
let g = 3.0;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);

fn ceil(self) -> Self[src]

Expand description

Returns the smallest integer greater than or equal to a number.

use num_traits::Float;

let f = 3.01;
let g = 4.0;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);

fn round(self) -> Self[src]

Expand description

Returns the nearest integer to a number. Round half-way cases away from 0.0.

use num_traits::Float;

let f = 3.3;
let g = -3.3;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);

fn trunc(self) -> Self[src]

Expand description

Return the integer part of a number.

use num_traits::Float;

let f = 3.3;
let g = -3.7;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);

fn fract(self) -> Self[src]

Expand description

Returns the fractional part of a number.

use num_traits::Float;

let x = 3.5;
let y = -3.5;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

fn abs(self) -> Self[src]

Expand description

Computes the absolute value of self. Returns Float::nan() if the number is Float::nan().

use num_traits::Float;
use std::f64;

let x = 3.5;
let y = -3.5;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());

fn signum(self) -> Self[src]

Expand description

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or Float::infinity()
  • -1.0 if the number is negative, -0.0 or Float::neg_infinity()
  • Float::nan() if the number is Float::nan()
use num_traits::Float;
use std::f64;

let f = 3.5;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());

fn is_sign_positive(self) -> bool[src]

Expand description

Returns true if self is positive, including +0.0, Float::infinity(), and since Rust 1.20 also Float::nan().

use num_traits::Float;
use std::f64;

let neg_nan: f64 = -f64::NAN;

let f = 7.0;
let g = -7.0;

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
assert!(!neg_nan.is_sign_positive());

fn is_sign_negative(self) -> bool[src]

Expand description

Returns true if self is negative, including -0.0, Float::neg_infinity(), and since Rust 1.20 also -Float::nan().

use num_traits::Float;
use std::f64;

let nan: f64 = f64::NAN;

let f = 7.0;
let g = -7.0;

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
assert!(!nan.is_sign_negative());

fn mul_add(self, a: Self, b: Self) -> Self[src]

Expand description

Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a more accurate result than an unfused multiply-add.

Using mul_add can be more performant than an unfused multiply-add if the target architecture has a dedicated fma CPU instruction.

use num_traits::Float;

let m = 10.0;
let x = 4.0;
let b = 60.0;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);

fn recip(self) -> Self[src]

Expand description

Take the reciprocal (inverse) of a number, 1/x.

use num_traits::Float;

let x = 2.0;
let abs_difference = (x.recip() - (1.0/x)).abs();

assert!(abs_difference < 1e-10);

fn powi(self, n: i32) -> Self[src]

Expand description

Raise a number to an integer power.

Using this function is generally faster than using powf

use num_traits::Float;

let x = 2.0;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);

fn powf(self, n: Self) -> Self[src]

Expand description

Raise a number to a floating point power.

use num_traits::Float;

let x = 2.0;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);

fn sqrt(self) -> Self[src]

Expand description

Take the square root of a number.

Returns NaN if self is a negative number.

use num_traits::Float;

let positive = 4.0;
let negative = -4.0;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());

fn exp(self) -> Self[src]

Expand description

Returns e^(self), (the exponential function).

use num_traits::Float;

let one = 1.0;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn exp2(self) -> Self[src]

Expand description

Returns 2^(self).

use num_traits::Float;

let f = 2.0;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);

fn ln(self) -> Self[src]

Expand description

Returns the natural logarithm of the number.

use num_traits::Float;

let one = 1.0;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn log(self, base: Self) -> Self[src]

Expand description

Returns the logarithm of the number with respect to an arbitrary base.

use num_traits::Float;

let ten = 10.0;
let two = 2.0;

// log10(10) - 1 == 0
let abs_difference_10 = (ten.log(10.0) - 1.0).abs();

// log2(2) - 1 == 0
let abs_difference_2 = (two.log(2.0) - 1.0).abs();

assert!(abs_difference_10 < 1e-10);
assert!(abs_difference_2 < 1e-10);

fn log2(self) -> Self[src]

Expand description

Returns the base 2 logarithm of the number.

use num_traits::Float;

let two = 2.0;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn log10(self) -> Self[src]

Expand description

Returns the base 10 logarithm of the number.

use num_traits::Float;

let ten = 10.0;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn max(self, other: Self) -> Self[src]

Expand description

Returns the maximum of the two numbers.

use num_traits::Float;

let x = 1.0;
let y = 2.0;

assert_eq!(x.max(y), y);

fn min(self, other: Self) -> Self[src]

Expand description

Returns the minimum of the two numbers.

use num_traits::Float;

let x = 1.0;
let y = 2.0;

assert_eq!(x.min(y), x);

fn abs_sub(self, other: Self) -> Self[src]

Expand description

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
use num_traits::Float;

let x = 3.0;
let y = -3.0;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

fn cbrt(self) -> Self[src]

Expand description

Take the cubic root of a number.

use num_traits::Float;

let x = 8.0;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);

fn hypot(self, other: Self) -> Self[src]

Expand description

Calculate the length of the hypotenuse of a right-angle triangle given legs of length x and y.

use num_traits::Float;

let x = 2.0;
let y = 3.0;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);

fn sin(self) -> Self[src]

Expand description

Computes the sine of a number (in radians).

use num_traits::Float;
use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn cos(self) -> Self[src]

Expand description

Computes the cosine of a number (in radians).

use num_traits::Float;
use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn tan(self) -> Self[src]

Expand description

Computes the tangent of a number (in radians).

use num_traits::Float;
use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);

fn asin(self) -> Self[src]

Expand description

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

use num_traits::Float;
use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);

fn acos(self) -> Self[src]

Expand description

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

use num_traits::Float;
use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);

fn atan(self) -> Self[src]

Expand description

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

use num_traits::Float;

let f = 1.0;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn atan2(self, other: Self) -> Self[src]

Expand description

Computes the four quadrant arctangent of self (y) and other (x).

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
use num_traits::Float;
use std::f64;

let pi = f64::consts::PI;
// All angles from horizontal right (+x)
// 45 deg counter-clockwise
let x1 = 3.0;
let y1 = -3.0;

// 135 deg clockwise
let x2 = -3.0;
let y2 = 3.0;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);

fn sin_cos(self) -> (Self, Self)[src]

Expand description

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

use num_traits::Float;
use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_0 < 1e-10);

fn exp_m1(self) -> Self[src]

Expand description

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

use num_traits::Float;

let x = 7.0;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);

fn ln_1p(self) -> Self[src]

Expand description

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

use num_traits::Float;
use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn sinh(self) -> Self[src]

Expand description

Hyperbolic sine function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let x = 1.0;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);

fn cosh(self) -> Self[src]

Expand description

Hyperbolic cosine function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let x = 1.0;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);

fn tanh(self) -> Self[src]

Expand description

Hyperbolic tangent function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let x = 1.0;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);

fn asinh(self) -> Self[src]

Expand description

Inverse hyperbolic sine function.

use num_traits::Float;

let x = 1.0;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

fn acosh(self) -> Self[src]

Expand description

Inverse hyperbolic cosine function.

use num_traits::Float;

let x = 1.0;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

fn atanh(self) -> Self[src]

Expand description

Inverse hyperbolic tangent function.

use num_traits::Float;
use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);

fn integer_decode(self) -> (u64, i16, i8)[src]

Expand description

Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent.

use num_traits::Float;

let num = 2.0f32;

// (8388608, -22, 1)
let (mantissa, exponent, sign) = Float::integer_decode(num);
let sign_f = sign as f32;
let mantissa_f = mantissa as f32;
let exponent_f = num.powf(exponent as f32);

// 1 * 8388608 * 2^(-22) == 2
let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();

assert!(abs_difference < 1e-10);

Provided methods

fn epsilon() -> Self[src]

Expand description

Returns epsilon, a small positive value.

use num_traits::Float;
use std::f64;

let x: f64 = Float::epsilon();

assert_eq!(x, f64::EPSILON);

Panics

The default implementation will panic if f32::EPSILON cannot be cast to Self.

fn to_degrees(self) -> Self[src]

Expand description

Converts radians to degrees.

use std::f64::consts;

let angle = consts::PI;

let abs_difference = (angle.to_degrees() - 180.0).abs();

assert!(abs_difference < 1e-10);

fn to_radians(self) -> Self[src]

Expand description

Converts degrees to radians.

use std::f64::consts;

let angle = 180.0_f64;

let abs_difference = (angle.to_radians() - consts::PI).abs();

assert!(abs_difference < 1e-10);

Implementations on Foreign Types

impl Float for f64[src]

pub fn nan() -> f64[src]

pub fn infinity() -> f64[src]

pub fn neg_infinity() -> f64[src]

pub fn neg_zero() -> f64[src]

pub fn min_value() -> f64[src]

pub fn min_positive_value() -> f64[src]

pub fn epsilon() -> f64[src]

pub fn max_value() -> f64[src]

pub fn abs_sub(self, other: f64) -> f64[src]

pub fn integer_decode(self) -> (u64, i16, i8)[src]

pub fn is_nan(self) -> bool[src]

pub fn is_infinite(self) -> bool[src]

pub fn is_finite(self) -> bool[src]

pub fn is_normal(self) -> bool[src]

pub fn classify(self) -> FpCategory[src]

pub fn floor(self) -> f64[src]

pub fn ceil(self) -> f64[src]

pub fn round(self) -> f64[src]

pub fn trunc(self) -> f64[src]

pub fn fract(self) -> f64[src]

pub fn abs(self) -> f64[src]

pub fn signum(self) -> f64[src]

pub fn is_sign_positive(self) -> bool[src]

pub fn is_sign_negative(self) -> bool[src]

pub fn mul_add(self, a: f64, b: f64) -> f64[src]

pub fn recip(self) -> f64[src]

pub fn powi(self, n: i32) -> f64[src]

pub fn powf(self, n: f64) -> f64[src]

pub fn sqrt(self) -> f64[src]

pub fn exp(self) -> f64[src]

pub fn exp2(self) -> f64[src]

pub fn ln(self) -> f64[src]

pub fn log(self, base: f64) -> f64[src]

pub fn log2(self) -> f64[src]

pub fn log10(self) -> f64[src]

pub fn to_degrees(self) -> f64[src]

pub fn to_radians(self) -> f64[src]

pub fn max(self, other: f64) -> f64[src]

pub fn min(self, other: f64) -> f64[src]

pub fn cbrt(self) -> f64[src]

pub fn hypot(self, other: f64) -> f64[src]

pub fn sin(self) -> f64[src]

pub fn cos(self) -> f64[src]

pub fn tan(self) -> f64[src]

pub fn asin(self) -> f64[src]

pub fn acos(self) -> f64[src]

pub fn atan(self) -> f64[src]

pub fn atan2(self, other: f64) -> f64[src]

pub fn sin_cos(self) -> (f64, f64)[src]

pub fn exp_m1(self) -> f64[src]

pub fn ln_1p(self) -> f64[src]

pub fn sinh(self) -> f64[src]

pub fn cosh(self) -> f64[src]

pub fn tanh(self) -> f64[src]

pub fn asinh(self) -> f64[src]

pub fn acosh(self) -> f64[src]

pub fn atanh(self) -> f64[src]

impl Float for f32[src]

pub fn nan() -> f32[src]

pub fn infinity() -> f32[src]

pub fn neg_infinity() -> f32[src]

pub fn neg_zero() -> f32[src]

pub fn min_value() -> f32[src]

pub fn min_positive_value() -> f32[src]

pub fn epsilon() -> f32[src]

pub fn max_value() -> f32[src]

pub fn abs_sub(self, other: f32) -> f32[src]

pub fn integer_decode(self) -> (u64, i16, i8)[src]

pub fn is_nan(self) -> bool[src]

pub fn is_infinite(self) -> bool[src]

pub fn is_finite(self) -> bool[src]

pub fn is_normal(self) -> bool[src]

pub fn classify(self) -> FpCategory[src]

pub fn floor(self) -> f32[src]

pub fn ceil(self) -> f32[src]

pub fn round(self) -> f32[src]

pub fn trunc(self) -> f32[src]

pub fn fract(self) -> f32[src]

pub fn abs(self) -> f32[src]

pub fn signum(self) -> f32[src]

pub fn is_sign_positive(self) -> bool[src]

pub fn is_sign_negative(self) -> bool[src]

pub fn mul_add(self, a: f32, b: f32) -> f32[src]

pub fn recip(self) -> f32[src]

pub fn powi(self, n: i32) -> f32[src]

pub fn powf(self, n: f32) -> f32[src]

pub fn sqrt(self) -> f32[src]

pub fn exp(self) -> f32[src]

pub fn exp2(self) -> f32[src]

pub fn ln(self) -> f32[src]

pub fn log(self, base: f32) -> f32[src]

pub fn log2(self) -> f32[src]

pub fn log10(self) -> f32[src]

pub fn to_degrees(self) -> f32[src]

pub fn to_radians(self) -> f32[src]

pub fn max(self, other: f32) -> f32[src]

pub fn min(self, other: f32) -> f32[src]

pub fn cbrt(self) -> f32[src]

pub fn hypot(self, other: f32) -> f32[src]

pub fn sin(self) -> f32[src]

pub fn cos(self) -> f32[src]

pub fn tan(self) -> f32[src]

pub fn asin(self) -> f32[src]

pub fn acos(self) -> f32[src]

pub fn atan(self) -> f32[src]

pub fn atan2(self, other: f32) -> f32[src]

pub fn sin_cos(self) -> (f32, f32)[src]

pub fn exp_m1(self) -> f32[src]

pub fn ln_1p(self) -> f32[src]

pub fn sinh(self) -> f32[src]

pub fn cosh(self) -> f32[src]

pub fn tanh(self) -> f32[src]

pub fn asinh(self) -> f32[src]

pub fn acosh(self) -> f32[src]

pub fn atanh(self) -> f32[src]

Implementors

impl Float for f16

pub fn floor(self) -> f16

pub fn ceil(self) -> f16

pub fn round(self) -> f16

pub fn trunc(self) -> f16

pub fn fract(self) -> f16

pub fn abs(self) -> f16

pub fn recip(self) -> f16

pub fn sqrt(self) -> f16

pub fn exp(self) -> f16

pub fn exp2(self) -> f16

pub fn ln(self) -> f16

pub fn log2(self) -> f16

pub fn log10(self) -> f16

pub fn cbrt(self) -> f16

pub fn sin(self) -> f16

pub fn cos(self) -> f16

pub fn tan(self) -> f16

pub fn sinh(self) -> f16

pub fn cosh(self) -> f16

pub fn tanh(self) -> f16

pub fn asin(self) -> f16

pub fn acos(self) -> f16

pub fn atan(self) -> f16

pub fn asinh(self) -> f16

pub fn acosh(self) -> f16

pub fn atanh(self) -> f16

pub fn exp_m1(self) -> f16

pub fn ln_1p(self) -> f16

pub fn classify(self) -> FpCategory

pub fn is_nan(self) -> bool

pub fn is_infinite(self) -> bool

pub fn is_finite(self) -> bool

pub fn is_normal(self) -> bool

pub fn is_sign_positive(self) -> bool

pub fn is_sign_negative(self) -> bool

pub fn powf(self, other: f16) -> f16

pub fn log(self, other: f16) -> f16

pub fn max(self, other: f16) -> f16

pub fn min(self, other: f16) -> f16

pub fn abs_sub(self, other: f16) -> f16

pub fn hypot(self, other: f16) -> f16

pub fn atan2(self, other: f16) -> f16

pub fn nan() -> f16

pub fn infinity() -> f16

pub fn neg_infinity() -> f16

pub fn neg_zero() -> f16

pub fn max_value() -> f16

pub fn min_value() -> f16

pub fn min_positive_value() -> f16

pub fn signum(self) -> f16

pub fn mul_add(self, a: f16, b: f16) -> f16

pub fn powi(self, i: i32) -> f16

pub fn sin_cos(self) -> (f16, f16)

pub fn integer_decode(self) -> (u64, i16, i8)