tract_core/ops/array/
gather.rs

1use crate::internal::*;
2use crate::ops::einsum::block_quant_aware_input_shape;
3use crate::ops::matmul::pack::OptSimpleMatMulPack;
4use ndarray::*;
5use tract_linalg::block_quant::BlockQuantValue;
6use tract_linalg::mmm::MMMInputValue;
7
8#[derive(Debug, Clone, Hash, PartialEq)]
9pub struct Gather {
10    pub axis: usize,
11    pub output_type: Option<DatumType>,
12}
13
14impl Op for Gather {
15    fn name(&self) -> StaticName {
16        "Gather".into()
17    }
18
19    op_as_typed_op!();
20    impl_op_same_as!();
21}
22
23impl Gather {
24    pub fn new(axis: usize) -> Gather {
25        Gather { axis, output_type: None }
26    }
27
28    pub fn compute_output_shape<D: DimLike>(
29        &self,
30        input_shape: &[D],
31        indices_shape: &[D],
32    ) -> TractResult<TVec<D>> {
33        ensure!(input_shape.len() > self.axis);
34        let mut output_shape: TVec<D> = input_shape[..self.axis].into();
35        output_shape.extend(indices_shape.iter().cloned());
36        output_shape.extend(input_shape[self.axis + 1..].iter().cloned());
37        Ok(output_shape)
38    }
39
40    fn eval_t<T: Datum>(&self, data: TValue, indices: &TValue) -> TractResult<Tensor> {
41        let data_view = unsafe { data.to_array_view_unchecked::<T>() };
42        let indices = indices.to_array_view::<i64>()?;
43        let output_shape = &*self.compute_output_shape(data.shape(), indices.shape())?;
44        let mut output = unsafe { Tensor::uninitialized::<T>(output_shape)? };
45        let mut output_view = output.to_array_view_mut::<T>()?;
46
47        let data_shape = data.shape();
48        let data_axis = self.axis;
49
50        let block_len = data_shape[data_axis + 1..].iter().product::<usize>();
51
52        let can_block_copy = data_shape[..data_axis].iter().all(|&d| d == 1)
53            && output_shape[..data_axis].iter().all(|&d| d == 1)
54            && data_view.is_standard_layout()
55            && output_view.is_standard_layout();
56
57        if can_block_copy {
58            let mut out_offset = 0;
59            let input_slice = data_view.as_slice().unwrap();
60            let output_slice = &mut output_view.as_slice_mut().unwrap();
61            for idx_coords in indices.indexed_iter() {
62                let index = *idx_coords.1;
63                let axis_len = data_shape[data_axis] as i64;
64                let resolved_index = if index < 0 { index + axis_len } else { index };
65                let resolved_index = resolved_index as usize;
66
67                let input_offset = resolved_index * block_len;
68
69                output_slice[out_offset..out_offset + block_len]
70                    .clone_from_slice(&input_slice[input_offset..input_offset + block_len]);
71                out_offset += block_len;
72            }
73        } else {
74            let ic_len = self.axis + 1 + output_shape.len() - (self.axis + indices.ndim());
75            let mut icoords = vec![0; ic_len];
76            let axis = self.axis;
77            for coords in tract_ndarray::indices(output_shape) {
78                let ocoords = coords.as_array_view();
79                let ocoords = ocoords.as_slice().unwrap();
80
81                let kcoords = &ocoords[self.axis..][..indices.ndim()];
82                let k = indices[kcoords];
83                let k = if k < 0 { k + data_view.shape()[self.axis] as i64 } else { k } as usize;
84                icoords[0..axis].copy_from_slice(&ocoords[..self.axis]);
85                icoords[self.axis] = k;
86                icoords[self.axis + 1..].clone_from_slice(&ocoords[self.axis + indices.ndim()..]);
87                output_view[ocoords] =
88                    data_view.get(&*icoords).cloned().context("Invalid gather")?;
89            }
90            unsafe { output.set_datum_type(data.datum_type()) };
91        }
92        Ok(output)
93    }
94
95    fn eval_bq<F: Datum>(&self, data: &BlockQuantValue, indices: &TValue) -> TractResult<Tensor> {
96        ensure!(self.axis == 0);
97        ensure!(data.fact.shape().len() == 2);
98        let data_shape = &data.fact.shape();
99        let output_shape = &*self.compute_output_shape(data_shape, indices.shape())?;
100        let mut output = unsafe { Tensor::uninitialized::<F>(output_shape)? };
101        let indices_slice = indices.as_slice::<i64>()?;
102        let vector_len = data_shape[1];
103
104        let block_len = data.fact.format.block_len();
105        let block_bytes = data.fact.format.block_bytes();
106        if F::datum_type() == f16::datum_type() {
107            let output_slice = output.as_slice_mut::<f16>()?;
108            for (pos, ix) in indices_slice.iter().enumerate() {
109                let slice = &mut output_slice[pos * vector_len..][..vector_len];
110                for i in (0..vector_len).step_by(block_len) {
111                    let offset = data_shape[1] * *ix as usize + i;
112                    let block_id = offset / block_len;
113                    data.fact.format.dequant_block_f16(
114                        &data.value[block_id * block_bytes..][..block_bytes],
115                        &mut slice[i..i + block_len],
116                    );
117                }
118            }
119        } else {
120            let output_slice = output.as_slice_mut::<f32>()?;
121            for (pos, ix) in indices_slice.iter().enumerate() {
122                let slice = &mut output_slice[pos * vector_len..][..vector_len];
123                for i in (0..vector_len).step_by(block_len) {
124                    let offset = data_shape[1] * *ix as usize + i;
125                    let block_id = offset / block_len;
126                    data.fact.format.dequant_block_f32(
127                        &data.value[block_id * block_bytes..][..block_bytes],
128                        &mut slice[i..i + block_len],
129                    );
130                }
131            }
132        }
133        Ok(output)
134    }
135
136    fn eval_input_store<F: Datum>(
137        &self,
138        data: &dyn MMMInputValue,
139        indices: &TValue,
140    ) -> TractResult<Tensor> {
141        ensure!(self.axis == 0);
142        let data_shape = &[data.mn(), data.k()];
143        let output_shape = &*self.compute_output_shape(data_shape, indices.shape())?;
144        let mut output = unsafe { Tensor::uninitialized::<F>(output_shape)? };
145        let indices_slice = indices.as_slice::<i64>()?;
146        let vector_len = data_shape[1];
147        if F::datum_type() == f16::datum_type() {
148            let output_slice = output.as_slice_mut::<f16>()?;
149            for (pos, m) in indices_slice.iter().enumerate() {
150                let slice = &mut output_slice[pos * vector_len..][..vector_len];
151                data.extract_at_mn_f16(*m as usize, slice)?;
152            }
153        } else {
154            let output_slice = output.as_slice_mut::<f32>()?;
155            for (pos, m) in indices_slice.iter().enumerate() {
156                let slice = &mut output_slice[pos * vector_len..][..vector_len];
157                data.extract_at_mn_f32(*m as usize, slice)?;
158            }
159        }
160        Ok(output)
161    }
162}
163
164impl TypedOp for Gather {
165    as_op!();
166
167    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
168        if let Some(dt) = self.output_type {
169            ensure!(
170                inputs[0].datum_type.is_opaque() || inputs[0].datum_type == dt,
171                "Inconsistent datum_type in Gather: attribute is {:?}, but inputs[0] is {:?}",
172                dt,
173                inputs[0].datum_type
174            );
175        } else {
176            ensure!(
177                !inputs[0].datum_type.is_opaque(),
178                "Gather applied to compressed data requires an explicit datum_type attribute for its output"
179            );
180        }
181        ensure!(inputs[1].datum_type == i64::datum_type());
182        if inputs[0].datum_type.is_opaque() {
183            let data_shape = block_quant_aware_input_shape(inputs[0])?;
184            Ok(tvec!(self
185                .output_type
186                .unwrap()
187                .fact(&*self.compute_output_shape(&data_shape, &inputs[1].shape)?)))
188        } else {
189            Ok(tvec!(inputs[0]
190                .datum_type
191                .fact(&*self.compute_output_shape(&inputs[0].shape, &inputs[1].shape)?)))
192        }
193    }
194
195    fn declutter(
196        &self,
197        model: &TypedModel,
198        node: &TypedNode,
199    ) -> TractResult<Option<TypedModelPatch>> {
200        let (input_fact, indices_fact) = args_2!(model.node_input_facts(node.id)?);
201        if let Some(indices) = indices_fact.konst.as_ref() {
202            if indices.rank() == 1 && indices.len() == 1 && input_fact.datum_type.is_number() {
203                let mut patch = TypedModelPatch::default();
204                let mut wire = patch.tap_model(model, node.inputs[0])?;
205                let index = indices.cast_to_scalar::<i64>()?;
206                let index = if index < 0 {
207                    let data_fact = model.outlet_fact(node.inputs[0])?;
208                    data_fact.shape[self.axis].clone() + index.to_dim()
209                } else {
210                    index.to_dim()
211                };
212                wire = patch.wire_node(
213                    format!("{}.slice", node.name),
214                    crate::ops::array::Slice {
215                        axis: self.axis,
216                        start: index.clone(),
217                        end: index + 1,
218                    },
219                    &[wire],
220                )?[0];
221                patch.shunt_outside(model, node.id.into(), wire)?;
222                return Ok(Some(patch));
223            }
224        }
225        if input_fact.konst.is_some() {
226            // look for a OptSimpleMatMulPack *sibling*
227            if let Some(sibling) = model
228                .outlet_successors(node.inputs[0])
229                .iter()
230                .find(|o| o.node != node.id && model.node(o.node).op_is::<OptSimpleMatMulPack>())
231            {
232                let mut patch = TypedModelPatch::default();
233                let mut taps = patch.taps(model, &node.inputs)?;
234                taps[0] = patch.tap_model(model, sibling.node.into())?;
235                let wire = patch.wire_node(&node.name, self.clone(), &taps)?[0];
236                patch.shunt_outside(model, node.id.into(), wire)?;
237                return Ok(Some(patch));
238            }
239        }
240        Ok(None)
241    }
242}
243
244impl EvalOp for Gather {
245    fn is_stateless(&self) -> bool {
246        true
247    }
248
249    fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
250        let (data, indices) = args_2!(inputs);
251        let result = if let Ok(opaque) = data.to_scalar::<Opaque>() {
252            let dt = self.output_type.unwrap();
253            if let Some(data) = opaque.downcast_ref::<BlockQuantValue>() {
254                dispatch_floatlike!(Self::eval_bq(dt)(self, data, &indices))?
255            } else if let Some(data) = opaque.downcast_ref::<Box<dyn MMMInputValue>>() {
256                dispatch_floatlike!(Self::eval_input_store(dt)(self, &**data, &indices))?
257            } else {
258                bail!("Can't use Gather on {:?} input", data);
259            }
260        } else {
261            dispatch_datum!(Self::eval_t(data.datum_type())(self, data, &indices))?
262        };
263        Ok(tvec!(result.into_tvalue()))
264    }
265}
266
267#[cfg(test)]
268mod tests {
269    use super::*;
270
271    #[test]
272    fn test_should_gather_scalar_index() {
273        let data = Tensor::from(arr1(&[1i64, 2, 3]));
274        let gatherer = Gather::new(0);
275        for idx in 2..3 {
276            let index = Tensor::from(arr0(idx));
277            let outputs =
278                gatherer.eval(tvec![data.clone().into_tvalue(), index.into_tvalue()]).unwrap();
279            let output = &outputs[0];
280            assert_eq!(output.shape().len(), 0);
281            assert_eq!(*output.to_scalar::<i64>().unwrap(), idx + 1);
282        }
283    }
284}