Struct tract_core::model::Node

source ·
pub struct Node<F: Fact + Hash, O: Hash> {
    pub id: usize,
    pub name: String,
    pub inputs: Vec<OutletId>,
    pub op: O,
    pub outputs: TVec<Outlet<F>>,
}
Expand description

A Node in an Model.

Parameterized by a Fact implementation matching the one used in the model.

Fields§

§id: usize

node id in the model

Caution: this id will not be persistent during networks transformation

§name: String

name of the node

This will usually come from the importing framework. tract transformation try to maintain the names accross transformations.

§inputs: Vec<OutletId>

A list of incoming tensors, identified by the node outlet that creates them.

§op: O

The actual operation the node performs.

§outputs: TVec<Outlet<F>>

List of ouputs, with their descendant and tensor type information.

Implementations§

Access the op of the node

Examples found in repository?
src/model/node.rs (line 53)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    pub fn op_as<O: Op>(&self) -> Option<&O> {
        self.op().downcast_ref::<O>()
    }

    /// Try to downcast the node operation to O.
    pub fn op_as_mut<O: Op>(&mut self) -> Option<&mut O> {
        self.op.as_mut().downcast_mut::<O>()
    }

    /// Check if the node operation is of type O.
    pub fn op_is<O: Op>(&self) -> bool {
        self.op_as::<O>().is_some()
    }

    /// Check that this node produce the same outputs as `other`.
    pub fn same_as(&self, other: &Node<F, NodeOp>) -> bool {
        self.inputs == other.inputs && self.op().same_as(other.op())
    }
More examples
Hide additional examples
src/plan.rs (line 153)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    pub fn new(plan: P) -> TractResult<SimpleState<F, O, M, P>> {
        let values = vec![None; plan.borrow().model.borrow().nodes().len()];
        let mut session = SessionState::default();
        let model = plan.borrow().model();
        let states: Vec<Option<Box<dyn OpState>>> = model
            .nodes()
            .iter()
            .map(|n: &Node<F, O>| n.op().state(&mut session, n.id))
            .collect::<TractResult<_>>()?;
        Ok(SimpleState { plan, states, session_state: session, values, _phantom: PhantomData })
    }

    /// Reset wires state.
    pub fn reset_turn(&mut self) -> TractResult<()> {
        self.values.iter_mut().for_each(|s| *s = None);
        Ok(())
    }

    /// Reset op inner state.
    pub fn reset_op_states(&mut self) -> TractResult<()> {
        let &mut SimpleState { ref plan, ref mut session_state, ref mut states, .. } = self;
        *states = plan
            .borrow()
            .model()
            .nodes()
            .iter()
            .map(|n| n.op().state(session_state, n.id))
            .collect::<TractResult<_>>()?;
        Ok(())
    }

    pub fn run(&mut self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
        self.run_plan_with_eval(inputs, self::eval)
    }

    pub fn exec(&mut self) -> TractResult<()> {
        self.exec_plan_with_eval(self::eval)
    }

    pub fn run_plan_with_eval<Eval, E>(
        &mut self,
        inputs: TVec<TValue>,
        eval: Eval,
    ) -> TractResult<TVec<TValue>>
    where
        Eval: for<'a, 'b, 'c> FnMut(
            &'a mut SessionState,
            Option<&'b mut (dyn OpState + 'static)>,
            &'c Node<F, O>,
            TVec<TValue>,
        ) -> Result<TVec<TValue>, E>,
        E: Into<anyhow::Error> + Send + Sync + 'static,
    {
        self.set_inputs(inputs)?;
        self.exec_plan_with_eval(eval)?;
        let outputs = self.outputs()?;
        self.reset_turn()?;
        Ok(outputs)
    }

    pub fn exec_plan_with_eval<Eval, E>(&mut self, mut eval: Eval) -> TractResult<()>
    where
        Eval: for<'a, 'b, 'c> FnMut(
            &'a mut SessionState,
            Option<&'b mut (dyn OpState + 'static)>,
            &'c Node<F, O>,
            TVec<TValue>,
        ) -> Result<TVec<TValue>, E>,
        E: Into<anyhow::Error> + Send + Sync + 'static,
    {
        {
            let &mut SimpleState {
                ref plan,
                ref mut session_state,
                ref mut states,
                ref mut values,
                ..
            } = self;
            let plan = plan.borrow();
            let model = plan.model().borrow();
            for (step, n) in plan.order.iter().enumerate() {
                let node = model.node(*n);
                trace!("Running step {}, node {}", step, node);
                let mut inputs: TVec<TValue> = tvec![];
                for i in &node.inputs {
                    trace!("  use input {:?}", i);
                    let prec_node = model.node(i.node);
                    let prec = values[i.node].as_ref().ok_or_else(|| {
                        format_err!("Computing {}, precursor {} not done:", node, prec_node)
                    })?;
                    inputs.push(prec[i.slot].clone())
                }

                for flush in &plan.flush_lists[step] {
                    trace!("  Ran {} can now flush {}", node, model.node(*flush));
                    values[*flush] = None;
                }

                if cfg!(debug_assertions) {
                    let facts = model.node_input_facts(node.id)?;
                    if facts.len() != inputs.len() {
                        bail!(
                            "Evaluating {}: expected {} inputs, got {}",
                            node,
                            facts.len(),
                            inputs.len()
                        );
                    }
                    for (ix, (v, f)) in inputs.iter().zip(facts.iter()).enumerate() {
                        if !f.matches(v, Some(&session_state.resolved_symbols))? {
                            bail!(
                                "Evaluating {}: input {:?}, expected {:?}, got {:?}",
                                node,
                                ix,
                                f,
                                v
                            );
                        }
                    }
                }

                let vs = eval(session_state, states[node.id].as_deref_mut(), node, inputs)
                    .map_err(|e| e.into())?;

                if plan.has_unresolved_symbols {
                    for (o, v) in node.outputs.iter().zip(vs.iter()) {
                        if let Ok(f) = o.fact.to_typed_fact() {
                            for (dim_abstract, dim_concrete) in f.shape.iter().zip(v.shape()) {
                                Self::resolve(
                                    &mut session_state.resolved_symbols,
                                    &dim_abstract,
                                    *dim_concrete as i64,
                                );
                            }
                        }
                    }
                }
                if cfg!(debug_assertions) {
                    let facts = model.node_output_facts(node.id)?;
                    if facts.len() != vs.len() {
                        bail!(
                            "Evaluating {}: expected {} outputs, got {}",
                            node,
                            facts.len(),
                            vs.len()
                        );
                    }
                    for (ix, (v, f)) in vs.iter().zip(facts.iter()).enumerate() {
                        if node.outputs[ix].successors.len() == 0 {
                            continue;
                        }
                        if !f.matches(v, Some(&session_state.resolved_symbols))? {
                            bail!(
                                "Evaluating {}: output {:?}, expected {:?}, got {:?}",
                                node,
                                ix,
                                f,
                                v
                            );
                        }
                    }
                }

                values[node.id] = Some(vs);
            }
        }
        Ok(())
    }

    pub fn set_inputs(&mut self, inputs: TVec<TValue>) -> TractResult<()> {
        ensure!(
            inputs.len() == self.model().inputs.len(),
            "Wrong number of inputs for model. Expected {} got {}",
            self.model().inputs.len(),
            inputs.len()
        );
        for (ix, t) in inputs.into_iter().enumerate() {
            self.set_input(ix, t)?
        }
        Ok(())
    }

    fn resolve(symbols: &mut SymbolValues, expected: &TDim, provided: i64) {
        match expected {
            TDim::Sym(s) => symbols[s] = Some(provided),
            TDim::MulInt(x, expr) => Self::resolve(symbols, expr, provided / *x),
            _ => (),
        }
    }

    pub fn set_input(&mut self, input: usize, t: TValue) -> TractResult<()> {
        let outlet: OutletId = *self
            .model()
            .input_outlets()?
            .get(input)
            .ok_or_else(|| format_err!("Invalid input id for model ({}).", input))?;
        let SimpleState { plan, session_state, .. } = self;
        let plan = (*plan).borrow();
        let model = plan.model.borrow();
        if let Ok(fact) = model.outlet_fact(outlet)?.to_typed_fact() {
            for (expected, provided) in fact.shape.iter().zip(t.shape()) {
                Self::resolve(&mut session_state.resolved_symbols, &expected, *provided as i64)
            }
        }
        let fact = self.plan.borrow().model().outlet_fact(outlet)?;
        ensure!(
            fact.matches(&t, Some(&self.session_state.resolved_symbols))
            .with_context(|| format!("Setting input {}", input))?,
            "Input at index {} has incorrect dtype or shape (got shape {:?} and dtype {:?}, expected to match fact {:?})",
            input,
            t.shape(),
            t.datum_type(),
            fact
            );
        self.session_state.inputs.insert(outlet.node, t);
        Ok(())
    }

    pub fn output(&self, id: usize) -> TractResult<&TValue> {
        let outlet = self.model().output_outlets()?.get(id).with_context(|| {
            format!(
                "Required output {}, only have {}",
                id,
                self.model().output_outlets().unwrap().len()
            )
        })?;
        let value: &TValue = self
            .values
            .get(outlet.node)
            .context("node id for output beyond node values array")?
            .as_ref()
            .context("node is not an output")?
            .get(outlet.slot)
            .context("slot id too high")?;
        Ok(value)
    }

    pub fn outputs(&mut self) -> TractResult<TVec<TValue>> {
        let SimpleState { ref plan, ref mut values, .. } = self;
        let mut v = tvec![];
        for o in plan.borrow().outputs.iter() {
            let vs = values[o.node].as_mut().ok_or_else(|| {
                format_err!(
                    "Outputs of {:?} are not computed",
                    &plan.borrow().model().nodes()[o.node]
                )
            })?;
            v.push(vs[o.slot].clone())
        }
        Ok(v)
    }

    pub fn set_values(&mut self, id: usize, values: TVec<TValue>) -> TractResult<()> {
        self.values[id] = Some(values);
        Ok(())
    }

    pub fn set_value(&mut self, id: usize, value: TValue) -> TractResult<()> {
        self.set_values(id, tvec!(value))
    }

    pub fn prepare_inputs(&self, node: usize) -> TractResult<TVec<TValue>> {
        let SimpleState { ref plan, ref values, .. } = self;
        let plan = plan.borrow();
        let nodes = plan.model().nodes();
        let node = &nodes[node];
        let mut inputs: TVec<TValue> = tvec![];
        for i in &node.inputs {
            let prec_node = &nodes[i.node];
            let prec = values[i.node].as_ref().ok_or_else(|| {
                format_err!("Computing {}, precursor {} not done.", node, prec_node)
            })?;
            inputs.push(prec[i.slot].clone())
        }
        Ok(inputs)
    }

    pub fn compute_one(&mut self, node: usize) -> TractResult<()> {
        let inputs = self.prepare_inputs(node)?;
        self.compute_one_with_inputs(node, inputs)
    }

    pub fn compute_one_with_inputs(
        &mut self,
        node: usize,
        inputs: TVec<TValue>,
    ) -> TractResult<()> {
        let SimpleState { ref plan, ref mut session_state, ref mut values, .. } = self;
        let plan = plan.borrow();
        let nodes = plan.model().nodes();
        let node = &nodes[node];
        let vs = match self.states[node.id] {
            Some(ref mut state) => state.eval(session_state, node.op(), inputs),
            None => node.op().eval(inputs),
        }
        .with_context(|| format!("Evaluating {}", node))?;
        values[node.id] = Some(vs);
        Ok(())
    }

    pub fn compute_recursively(&mut self, node: usize) -> TractResult<&[TValue]> {
        let values = {
            #[allow(clippy::needless_collect)] // clippy bug ?
            let precs: Vec<usize> =
                self.model().nodes()[node].inputs.iter().map(|i| i.node).collect();
            for i in precs.into_iter() {
                if self.values[i].is_none() {
                    let _ = self.compute_recursively(i)?;
                }
            }
            let mut inputs: TVec<TValue> = tvec![];
            {
                let node = &self.model().nodes()[node];
                for i in &node.inputs {
                    inputs.push(self.values[i.node].as_ref().unwrap()[i.slot].clone())
                }
            }
            let Self { ref mut states, ref mut session_state, ref plan, .. } = self;
            let plan = plan.borrow();
            match states[node] {
                Some(ref mut state) => {
                    state.eval(session_state, plan.borrow().model().nodes()[node].op(), inputs)
                }
                None => plan.borrow().model().nodes()[node].op().eval(inputs),
            }
            .with_context(|| format!("Evaluating {:?}", node))?
        };
        self.values[node] = Some(values);
        Ok(self.values[node].as_ref().unwrap())
    }

    pub fn take_by_name(&mut self, name: &str) -> TractResult<TVec<Tensor>> {
        let id = self.model().node_by_name(name)?.id;
        Self::take(self, id)
    }

    pub fn take(&mut self, id: usize) -> TractResult<TVec<Tensor>> {
        Ok(self.values[id]
            .take()
            .ok_or_else(|| format_err!("Node is not computed"))?
            .into_iter()
            .map(|v| v.into_tensor())
            .collect())
    }

    pub fn plan(&self) -> &SimplePlan<F, O, M> {
        self.plan.borrow()
    }

    pub fn model(&self) -> &Graph<F, O> {
        self.plan().model()
    }

    pub fn freeze(&self) -> FrozenSimpleState<F, O, M, P> {
        FrozenSimpleState {
            plan: self.plan.clone(),
            inputs: self
                .session_state
                .inputs
                .iter()
                .map(|(ix, t)| (*ix, t.clone().into_tensor()))
                .collect(),
            resolved_symbols: self.session_state.resolved_symbols.clone(),
            tensors: self.session_state.tensors.clone(),
            states: self.states.iter().map(|s| s.as_ref().map(|s| s.freeze())).collect(),
            values: self
                .values
                .iter()
                .map(|t| t.as_ref().map(|t| t.iter().map(|t| t.clone().into_tensor()).collect()))
                .collect(),
            _phantom: PhantomData,
        }
    }
}

pub fn eval<F, O>(
    session_state: &mut SessionState,
    mut state: Option<&mut (dyn OpState + 'static)>,
    node: &Node<F, O>,
    input: TVec<TValue>,
) -> TractResult<TVec<TValue>>
where
    F: Fact + Hash + Clone + 'static,
    O: Debug + Display + AsRef<dyn Op> + AsMut<dyn Op> + Clone + 'static + Hash,
{
    let r = match state {
        Some(ref mut state) => state.eval(session_state, node.op(), input),
        None => node.op().eval(input),
    }
    .with_context(|| format!("Evaluating {}", node));
    r
}
src/ops/matmul/mir_unary.rs (line 234)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    fn declutter_precusor_is_concat(
        &self,
        model: &TypedModel,
        node: &TypedNode,
    ) -> TractResult<Option<TypedModelPatch>> {
        if let Some(concat) = model.nodes()[node.inputs[0].node].op().downcast_ref::<TypedConcat>()
        {
            let mut patch = TypedModelPatch::new("split over k-concatenated input");
            if concat.axis == self.axes.b_k {
                let concat_node = model.node(node.inputs[0].node);
                let offsets = concat
                    .offsets(&model.node_input_facts(concat_node.id)?)?
                    .iter()
                    .map(|x| x.to_usize())
                    .collect::<TractResult<Vec<usize>>>()?;
                let mut wires = vec![];
                for (ix, input) in concat_node.inputs.iter().enumerate() {
                    let wire = patch.tap_model(model, *input)?;
                    let a = self.a.slice(self.axes.a_k, offsets[ix], offsets[ix + 1])?;
                    let wire = patch.wire_node(
                        format!("{}.k-{}-{}", node.name, offsets[ix], offsets[ix + 1]),
                        MatMulUnary { a: a.into_arc_tensor(), ..self.clone() },
                        &[wire],
                    )?[0];
                    wires.push(wire)
                }
                let mut wire = wires[0];
                for (ix, w) in wires[1..].iter().enumerate() {
                    wire = patch.wire_node(
                        format!("{}.k-add-{}", node.name, ix),
                        crate::ops::binary::TypedBinOp(Box::new(crate::ops::math::Add)),
                        &[wire, *w],
                    )?[0];
                }
                patch.shunt_outside(model, OutletId::new(node.id, 0), wire)?;
                return Ok(Some(patch));
            }
        }
        Ok(None)
    }
src/model/graph.rs (line 609)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
        for i in 0..self.nodes.len() {
            let input_1 = self.nodes[i]
                .inputs
                .get(0)
                .map(|o| format!("{:?}", o))
                .unwrap_or_else(|| "".to_string());
            let input_2 = self.nodes[i]
                .inputs
                .get(1)
                .map(|o| format!("{:?}", o))
                .unwrap_or_else(|| "".to_string());
            let output_1 = self
                .outlet_successors(OutletId::new(i, 0))
                .get(0)
                .map(|o| format!("{:?}", o))
                .unwrap_or_else(|| "".to_string());
            let output_2 = self
                .outlet_successors(OutletId::new(i, 0))
                .get(1)
                .map(|o| format!("{:?}", o))
                .unwrap_or_else(|| "".to_string());
            writeln!(
                fmt,
                "{:5} | {:8} {:8} -> {:8} {:8} | {:25} {:50} {:?} => {:?}",
                i,
                input_1,
                input_2,
                output_1,
                output_2,
                self.nodes[i].op().name(),
                self.nodes[i].name,
                self.node_input_facts(i).unwrap(),
                self.node_output_facts(i).unwrap(),
            )?;
            if self.nodes[i].inputs.len() > 2 {
                writeln!(
                    fmt,
                    "                                               |   * inputs: {}",
                    self.nodes[i].inputs.iter().map(|s| format!("{:?}", s)).join(", ")
                )?;
            }
            if self.nodes[i].outputs.len() > 1
                || self.outlet_successors((i, 0).into()).len() > 2
                || (self.outlet_label(i.into()).is_some()
                    && self.outlet_label(i.into()).unwrap() != self.nodes[i].name)
            {
                for o in 0..self.nodes[i].outputs.len() {
                    if self.outlet_successors((i, o).into()).len() > 0 {
                        writeln!(
                                    fmt,
                                    "                                               |   * output #{}: {} {}",
                                    o,
                                    self.outlet_label((i, o).into()).unwrap_or(""),
                                    self.outlet_successors((i, o).into())
                                    .iter()
                                    .map(|s| format!("{:?}", s))
                                    .join(", "),
                                    )?;
                    }
                }
            }
        }
        writeln!(fmt, "outputs: {}", self.outputs.iter().map(|o| format!("{:?}", o)).join(", "))?;
        Ok(())
    }
src/ops/matmul/mir_quant_unary.rs (line 163)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    fn declutter(
        &self,
        model: &TypedModel,
        node: &TypedNode,
    ) -> TractResult<Option<TypedModelPatch>> {
        use crate::ops::array::TypedConcat;
        if let Some(concat) = model.nodes()[node.inputs[0].node].op().downcast_ref::<TypedConcat>()
        {
            let mut patch = TypedModelPatch::new("split over k-concatenated input");
            let k_axis = self.axes.a_k;
            if concat.axis == self.axes.b_k {
                let concat_node = model.node(node.inputs[0].node);
                let offsets = concat
                    .offsets(&model.node_input_facts(concat_node.id)?)?
                    .iter()
                    .map(|x| x.to_usize())
                    .collect::<TractResult<Vec<usize>>>()?;
                let mut wires = vec![];
                let mut params_for_split = self.params.clone();
                params_for_split.a_scale = tensor0(1.0f32).into();
                params_for_split.b_scale = tensor0(1.0f32).into();
                params_for_split.c_scale = tensor0(1.0f32).into();
                params_for_split.c0 = tensor0(0i32).into();
                let input_outlets = node
                    .inputs
                    .iter()
                    .skip(1)
                    .map(|o| patch.tap_model(model, *o))
                    .collect::<TractResult<TVec<_>>>()?;
                let params_outlets = self.params.as_outlet_ids(
                    &mut patch,
                    &node.name,
                    &input_outlets,
                    self.a.datum_type(),
                    model.node_input_facts(node.id)?[0].datum_type,
                    self.output_type,
                )?;

                let scale = combine_scales(
                    &mut patch,
                    &node.name,
                    params_outlets[1],
                    params_outlets[3],
                    params_outlets[5],
                )?;
                let c0 = params_outlets[4];

                for (ix, input) in concat_node.inputs.iter().enumerate() {
                    let wire = patch.tap_model(model, *input)?;
                    let a = self.a.slice(k_axis, offsets[ix], offsets[ix + 1])?;
                    let wire = patch
                        .wire_node(
                            format!("{}.k-{}-{}", node.name, offsets[ix], offsets[ix + 1]),
                            Self {
                                a: a.into_arc_tensor(),
                                output_type: DatumType::I32,
                                bias: self.bias.clone().filter(|_| ix == 0),
                                params: params_for_split.clone(),
                                ..self.clone()
                            },
                            &[wire],
                        )
                        .context("wiring new matmulunary")?[0];
                    wires.push(wire)
                }
                let mut wire = wires[0];
                for (ix, w) in wires[1..].iter().enumerate() {
                    wire = patch.wire_node(
                        format!("{}.k-add-{}", node.name, ix),
                        crate::ops::binary::TypedBinOp(Box::new(crate::ops::math::Add)),
                        &[wire, *w],
                    )?[0];
                }
                wire = requant(&mut patch, &node.name, wire, self.output_type, scale, c0)?;
                patch.shunt_outside(model, OutletId::new(node.id, 0), wire)?;
                return Ok(Some(patch));
            }
        }
        Ok(None)
    }
src/model/patch.rs (line 274)
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    pub fn apply(self, target: &mut Graph<F, O>) -> TractResult<()> {
        let prior_target_inputs = target.input_outlets()?.len();
        let prior_target_outputs = target.output_outlets()?.len();
        let ModelPatch {
            model: patch,
            incoming: mut mapping,
            shunt_outlet_by,
            obliterate,
            inputs: replaced_inputs,
            ..
        } = self;
        let mut all_inputs = HashMap::new(); // new_node_id_in_model -> [ patch_outlet_id ]
        let mut model_input_outlets = target.input_outlets()?.to_vec();
        for node in patch.nodes {
            if <Graph<F, O>>::is_source(&node.op)
                && mapping.contains_key(&OutletId::new(node.id, 0))
            {
                // this is a tap
                continue;
            }
            let Node { id: patch_node_id, name, inputs, op, outputs } = node;
            let n_outputs = outputs.len();
            for dup in 0..target.nodes.len() {
                if target.node(dup).op().same_as(op.as_ref())
                    && inputs.len() == target.node(dup).inputs.len()
                    && inputs
                        .iter()
                        .zip(target.node(dup).inputs.iter())
                        .all(|(patch_input, d)| mapping[patch_input] == *d)
                {
                    for ix in 0..n_outputs {
                        mapping.insert(OutletId::new(patch_node_id, ix), OutletId::new(dup, ix));
                    }
                    continue;
                }
            }
            let facts = outputs.into_iter().map(|of| of.fact).collect();
            let added_node_id = target.add_node(name, op, facts)?;
            for ix in 0..n_outputs {
                mapping.insert(OutletId::new(patch_node_id, ix), OutletId::new(added_node_id, ix));
            }
            all_inputs.insert(added_node_id, inputs);
            if <Graph<F, O>>::is_source(&target.node(added_node_id).op) {
                // this is actually an input replacement
                model_input_outlets.iter_mut().for_each(|oo| {
                    if oo.node == replaced_inputs[&patch_node_id] {
                        oo.node = added_node_id;
                    }
                });
            }
        }
        debug_assert_eq!(target.input_outlets()?.len(), prior_target_inputs);
        debug_assert_eq!(target.output_outlets()?.len(), prior_target_outputs);
        for (outlet, by) in shunt_outlet_by {
            let replace_by = mapping[&by];
            let succs = target.nodes()[outlet.node].outputs[outlet.slot].successors.clone();
            for succ in succs {
                target.add_edge(replace_by, succ)?;
            }
            for o in target.outputs.iter_mut() {
                if *o == outlet {
                    *o = replace_by;
                }
            }
            if let Some(label) = target.outlet_labels.remove(&outlet) {
                target.set_outlet_label(replace_by, label)?;
            }
        }
        if target.outputs.len() > target.outputs.iter().sorted().dedup().count() {
            bail!("Duplicate usage of node as output");
        }
        debug_assert_eq!(target.input_outlets()?.len(), prior_target_inputs);
        debug_assert_eq!(target.output_outlets()?.len(), prior_target_outputs);
        for (node, inputs) in all_inputs {
            for (ix, input) in inputs.into_iter().enumerate() {
                target.add_edge(mapping[&input], InletId::new(node, ix))?;
            }
        }
        debug_assert_eq!(target.input_outlets()?.len(), prior_target_inputs);
        debug_assert_eq!(target.output_outlets()?.len(), prior_target_outputs);
        for node in obliterate {
            target.node_mut(node).op = target.create_dummy();
        }
        debug_assert_eq!(target.input_outlets()?.len(), prior_target_inputs);
        debug_assert_eq!(target.output_outlets()?.len(), prior_target_outputs);
        target.set_input_outlets(&model_input_outlets)?;
        Ok(())
    }

Try to downcast the node operation to O.

Examples found in repository?
src/model/node.rs (line 63)
62
63
64
    pub fn op_is<O: Op>(&self) -> bool {
        self.op_as::<O>().is_some()
    }
More examples
Hide additional examples
src/ops/math/mod.rs (line 437)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
fn declutter_recip(model: &TypedModel, node: &TypedNode) -> TractResult<Option<TypedModelPatch>> {
    use super::element_wise::*;
    if let Some(prec) = model.single_prec(node.id)? {
        if let Some(ew) = prec.op_as::<ElementWiseOp>() {
            let repl = if ew.0.is::<Sqrt>() {
                Some(rsqrt())
            } else if ew.0.is::<Rsqrt>() {
                Some(sqrt())
            } else {
                None
            };
            if let Some(repl) = repl {
                let mut patch = TypedModelPatch::default();
                let mut wire = patch.tap_model(model, prec.inputs[0])?;
                wire = patch.wire_node(&node.name, repl, &[wire])?[0];
                patch.shunt_outside(model, node.id.into(), wire)?;
                return Ok(Some(patch));
            }
        }
    }
    Ok(None)
}
src/optim/slice.rs (line 86)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
pub fn should_slice_output(
    model: &TypedModel,
    node: &TypedNode,
    axis: usize,
) -> TractResult<Option<TVec<usize>>> {
    let Some(slice) = node.outputs[0].successors.iter().find_map(|inlet| {
        model.node(inlet.node).op_as::<Slice>().filter(|slice| slice.axis == axis).map(|_| inlet.node)
    }) else {
        return Ok(None)
    };
    let slice_op = model.node(slice).op_as::<Slice>().unwrap();
    let axis = slice_op.axis;
    let mut boundaries = tvec!();
    for succ in &node.outputs[0].successors {
        if let Some(slice) = model.node(succ.node).op_as::<Slice>() {
            if slice.axis == axis {
                boundaries.push(slice.start.clone());
                boundaries.push(slice.end.clone());
            }
        }
    }
    let mut boundaries: TVec<usize> = if let Ok(boundaries) =
        boundaries.iter().map(|x| x.to_usize()).collect::<TractResult<TVec<_>>>()
    {
        boundaries
    } else {
        return Ok(None);
    };
    let end = if let Ok(x) = node.outputs[0].fact.shape[axis].to_usize() {
        x
    } else {
        return Ok(None);
    };
    boundaries.push(end);
    boundaries.retain(|x| *x > 0);
    boundaries.sort();
    boundaries.dedup();
    Ok(Some(boundaries))
}

pub fn rewire_sliced_outputs(
    model: &TypedModel,
    node: &TypedNode,
    axis: usize,
    patch: &mut TypedModelPatch,
    boundaries: &[usize],
    splits: &[OutletId],
) -> TractResult<()> {
    let full = patch.wire_node(
        format!("{}.concat-{}", node.name, axis),
        crate::ops::array::TypedConcat::new(axis),
        splits,
    )?[0];
    patch.shunt_outside(model, node.id.into(), full)?;
    for (ix, succ) in node.outputs[0].successors.iter().enumerate() {
        if let Some(slice) =
            model.node(succ.node).op_as::<Slice>().filter(|slice| slice.axis == axis)
        {
            // example: boundaries: 2, 3, wanted: 0..2 -> [0]
            let slices: TVec<OutletId> = boundaries
                .iter()
                .zip(splits.iter())
                .filter_map(|(up, split)| {
                    if *up > slice.start.to_usize().unwrap() && *up <= slice.end.to_usize().unwrap()
                    {
                        Some(*split)
                    } else {
                        None
                    }
                })
                .collect();
            let wire = if slices.len() > 1 {
                patch.wire_node(
                    format!("{}.concat-m{}..{}..{}", node.name, ix, slice.start, slice.end),
                    crate::ops::array::TypedConcat::new(axis),
                    &slices,
                )?[0]
            } else {
                slices[0]
            };
            patch.shunt_outside(model, succ.node.into(), wire)?;
        }
    }
    Ok(())
}
src/ops/cnn/conv/unary.rs (line 720)
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    fn declutter_precursor_padding(
        &self,
        model: &TypedModel,
        node: &TypedNode,
    ) -> TractResult<Option<TypedModelPatch>> {
        if self.pool_spec.padding != PaddingSpec::Valid
            && !matches!(self.pool_spec.padding, PaddingSpec::Explicit(_, _, _))
        {
            return Ok(None);
        }
        let prec = model.node(node.inputs[0].node);
        let pad = if let Some(pad) = prec.op_as::<Pad>() { pad } else { return Ok(None) };
        let value = if let PadMode::Constant(c) = &pad.mode {
            c
        } else {
            return Ok(None);
        };
        let shape = self.pool_spec.data_format.shape(&model.outlet_fact(node.inputs[0])?.shape)?;
        if value.cast_to_scalar::<i64>()? != 0
            || (self.pool_spec.data_format.has_n() && pad.pads[0] != (0, 0))
            || pad.pads[shape.c_axis()] != (0, 0)
        {
            return Ok(None);
        }
        let mut before: TVec<usize> = pad.pads[shape.hw_axes()].iter().map(|pair| pair.0).collect();
        let mut after: TVec<usize> = pad.pads[shape.hw_axes()].iter().map(|pair| pair.1).collect();
        if let PaddingSpec::Explicit(bef, aft, false) = &self.pool_spec.padding {
            izip!(&mut before, bef).for_each(|(pad, cv)| *pad += cv);
            izip!(&mut after, aft).for_each(|(pad, cv)| *pad += cv);
        }
        let padding = PaddingSpec::Explicit(before, after, false);
        let mut new = self.clone();
        new.pool_spec.padding = padding;
        let mut patch = TypedModelPatch::default();
        let wire = patch.tap_model(model, prec.inputs[0])?;
        let wire = patch.wire_node(&node.name, new, &[wire])?;
        patch.shunt_outside(model, node.id.into(), wire[0])?;
        Ok(Some(patch))
    }
src/half.rs (line 20)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    fn translate_node(
        &self,
        _source: &Graph<TypedFact, Box<dyn TypedOp>>,
        node: &Node<TypedFact, Box<dyn TypedOp>>,
        target: &mut Graph<TypedFact, Box<dyn TypedOp>>,
        mapping: &HashMap<OutletId, OutletId>,
    ) -> TractResult<TVec<OutletId>> {
        let new_op = if let Some(source) = node.op_as::<TypedSource>() {
            Box::new(TypedSource::new(fact_f32_to_f16(&source.fact)))
        } else if let Some(op) = node.op_as::<ConvUnary>() {
            Box::new(ConvUnary {
                kernel: tensor_f32_to_f16(&op.kernel),
                bias: op.bias.as_ref().map(tensor_f32_to_f16),
                ..op.clone()
            })
        } else if let Some(op) = node.op_as::<DeconvUnary>() {
            Box::new(DeconvUnary {
                kernel: tensor_f32_to_f16(&op.kernel),
                bias: op.bias.as_ref().map(tensor_f32_to_f16),
                ..op.clone()
            })
        } else if let Some(op) = node.op_as::<MatMulUnary>() {
            Box::new(MatMulUnary { a: tensor_f32_to_f16(&op.a), ..op.clone() })
        } else if let Some(op) = node.op_as::<Pad>() {
            if let PadMode::Constant(t) = &op.mode {
                Box::new(Pad {
                    mode: PadMode::Constant(tensor_f32_to_f16(t)),
                    ..op.clone()
                })
            } else {
                Box::new(op.clone())
            }
        } else if let Some(op) = node.op_as::<Scan>() {
            let mut new = op.clone();
            new.body = HalfTranslator.translate_model(&op.body)?;
            for im in &mut new.input_mapping {
                if let InputMapping::State { initializer: StateInitializer::Value(v) } = im {
                    *v = tensor_f32_to_f16(v)
                }
            }
            Box::new(new)
        } else {
            node.op.clone()
        };
        target.wire_node(
            &node.name,
            new_op,
            &node.inputs.iter().map(|i| mapping[i]).collect::<TVec<_>>(),
        )
    }
src/ops/downsample/mod.rs (line 114)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
fn pull_downsample_up(
    model: &TypedModel,
    down_node: &TypedNode,
) -> TractResult<Option<TypedModelPatch>> {
    model.check_consistency()?;
    let down_op = down_node.op_as::<Downsample>().unwrap();
    if let Some(prec) = model.single_prec(down_node.id)? {
        let (input_facts, output_facts) = model.node_facts(prec.id)?;
        let invariants = prec.op.invariants(&input_facts, &output_facts)?;
        debug!("Consider pull {:?} over {:?} (invariants: {:?})", down_op, prec, invariants);
        if let Some(slice_op) = prec.op_as::<ops::array::Slice>() {
            if let Some(p) = array::pull_downsample_over_slice(model, prec, slice_op, down_node, down_op)? {
                return Ok(Some(p))
            }
        } else if let Some(other_op) = prec.op_as::<AxisOp>() {
            return array::pull_downsample_over_axis_op(model, prec, other_op, down_node, down_op);
        } else if let Some(conv_op) = prec.op_as::<ops::cnn::conv::ConvUnary>() {
            return conv::fuse_downsample_into_conv(model, prec, conv_op, down_node, down_op);
        } else if let Some(other_op) = prec.op_as::<ops::scan::Scan>() {
            return scan::pull_downsample_over_scan(model, prec, other_op, down_node, down_op);
        }
        if let Some(above_axis) = invariants.unary_track_axis_up(down_op.axis, false) {
            let mut patch = TypedModelPatch::default();
            let mut inputs = vec![];
            for (ix, &oo) in prec.inputs.iter().enumerate() {
                let source = patch.tap_model(model, oo)?;
                let mut op = down_op.clone();
                op.axis = above_axis;
                let ds = patch.wire_node(
                    format!("{}.{}-{}", down_node.name, prec.name, ix),
                    op,
                    [source].as_ref(),
                )?;
                inputs.push(ds[0]);
            }
            let other = patch.wire_node(&prec.name, prec.op.clone(), &inputs)?;
            patch.shunt_outside(model, OutletId::new(down_node.id, 0), other[0])?;
            return Ok(Some(patch));
        }
    }
    Ok(None)
}

Try to downcast the node operation to O.

Examples found in repository?
src/ops/downsample/scan.rs (line 53)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
pub fn pull_downsample_over_scan(
    model: &TypedModel,
    scan_node: &TypedNode,
    scan_op: &ops::scan::Scan,
    down_node: &TypedNode,
    down_op: &Downsample,
) -> TractResult<Option<TypedModelPatch>> {
    if down_op.stride < 0 {
        return Ok(None);
    }

    // introduce downsample at end of body
    let mut downsampled_body = scan_op.body.clone();
    downsampled_body.check_consistency()?;
    let outputs = downsampled_body.output_outlets()?.to_owned();
    let downsample_outputs = outputs
        .into_iter()
        .enumerate()
        .map(|(ix, oo)| {
            Ok(downsampled_body.wire_node(
                format!("{}-{}", &down_node.name, ix),
                down_op.clone(),
                &[oo],
            )?[0])
        })
        .collect::<TractResult<Vec<_>>>()?;
    downsampled_body.set_output_outlets(&downsample_outputs)?;
    downsampled_body.declutter()?;
    downsampled_body.check_consistency()?;

    // check if downsample ops introduced at end have swimmed up to scan inputs during declutter
    for input in downsampled_body.input_outlets()? {
        let input = downsampled_body.node(input.node);
        if input.outputs[0]
            .successors
            .iter()
            .any(|succ| !downsampled_body.node(succ.node).op().same_as(down_op))
        {
            return Ok(None);
        }
    }

    let inputs = downsampled_body.input_outlets()?.to_vec();
    for input in inputs {
        let node = &mut downsampled_body.node_mut(input.node);
        let fact = &mut node.outputs[0].fact;
        *fact = down_op.transform_fact(fact)?;
        node.op_as_mut::<crate::ops::source::TypedSource>().unwrap().fact = fact.clone();
        let downsamples = downsampled_body.node(input.node).outputs[0].successors.clone();
        for ds in downsamples {
            TypedModelPatch::shunt_one_op(&downsampled_body as _, downsampled_body.node(ds.node))?
                .apply(&mut downsampled_body)?;
        }
    }

    downsampled_body.check_consistency()?;
    let inner_model = downsampled_body.into_decluttered()?;

    let mut new_scan = scan_op.clone();
    new_scan.body = inner_model;
    for input in &mut new_scan.input_mapping {
        match input {
            InputMapping::State { ref mut initializer } => {
                if let StateInitializer::Value(ref v) = initializer {
                    let mut new_v = down_op.eval(tvec!(v.clone().into_tvalue()))?;
                    *initializer = StateInitializer::Value(new_v.remove(0).into_arc_tensor());
                }
            }
            InputMapping::Scan(info) => {
                if info.chunk > 0 && info.chunk as usize % down_op.stride as usize != 0 {
                    return Ok(None);
                }
                info.chunk = info.chunk.unsigned_abs().divceil(down_op.stride as usize) as isize
                    * info.chunk.signum()
            }
            _ => (),
        }
    }
    for output in &mut new_scan.output_mapping {
        if let Some(d) = output.full_dim_hint.as_mut() {
            *d = down_op.transform_dim(d)
        }
        if let Some(info) = &mut output.scan {
            if info.chunk as usize % down_op.stride as usize != 0 {
                return Ok(None);
            }
            info.chunk = info.chunk.unsigned_abs().divceil(down_op.stride as usize) as isize
                * info.chunk.signum()
        }
    }

    let mut patch = TypedModelPatch::default();
    let mut inputs = tvec!();
    for (ix, &i) in scan_node.inputs.iter().enumerate() {
        let tap = patch.tap_model(model, i)?;
        let ds = patch.wire_node(format!("{}-{}", down_node.name, ix), down_op.clone(), &[tap])?[0];
        inputs.push(ds);
    }
    let scan = patch.wire_node(&*scan_node.name, new_scan, &inputs)?;
    for ix in 0..scan_node.outputs.len() {
        // FIXME need to check earlier on that all output are followed by a ds
        let succ = scan_node.outputs[ix].successors[0].node;
        patch.shunt_outside(model, OutletId::new(succ, 0), scan[ix])?;
    }
    Ok(Some(patch))
}

Check if the node operation is of type O.

Examples found in repository?
src/optim/prop_const.rs (line 22)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    fn next(
        &mut self,
        _session: &mut OptimizerSession,
        model: &TypedModel,
    ) -> TractResult<Option<TypedModelPatch>> {
        let mut patch = TypedModelPatch::default();
        for n in model.eval_order()? {
            let node = model.node(n);
            if node.op.is_stateless() && !node.op_is::<Const>() {
                if let Some(inputs) = model
                    .node_input_facts(n)?
                    .iter()
                    .map(|f| f.konst.clone().map(|t| t.into_tvalue()))
                    .collect()
                {
                    match node.op.eval(inputs) {
                        Ok(res) => {
                            for (ix, output) in res.into_iter().enumerate() {
                                let mut name = node.name.clone();
                                if ix > 0 {
                                    name = format!("{}.{}", name, ix);
                                }
                                let wire = patch.add_const(name, output.into_arc_tensor())?;
                                patch.shunt_outside(model, (n, ix).into(), wire)?;
                            }
                        }
                        Err(e) => {
                            if !e.root_cause().is::<UndeterminedSymbol>() {
                                Err(e).with_context(|| {
                                    format!("Eager eval {} during optimisation", model.node(n))
                                })?;
                            }
                        }
                    }
                }
            }
        }
        Ok(Some(patch).filter(|p| p.nodes.len() > 0))
    }
More examples
Hide additional examples
src/ops/change_axes.rs (line 742)
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
pub fn change_axes(
    model: &TypedModel,
    change: &AxisChange,
    locked: &[OutletId],
    bounds: &[TVec<OutletId>],
) -> TractResult<Option<(TypedModelPatch, TVec<(InOut, AxisOp)>)>> {
    trace!("Considering change {:?}", change);
    let mut todo_changes = vec![(change.clone(), None)];
    let mut changed_wires = HashMap::new();
    changed_wires.insert(change.outlet, change.op.clone());
    let mut changed_ops: HashMap<usize, Box<dyn TypedOp>> = HashMap::new();
    while let Some((c, emitter)) = todo_changes.pop() {
        let outlets = if let Some(group) = bounds.iter().find(|b| b.contains(&c.outlet)) {
            group.clone()
        } else {
            tvec![c.outlet]
        };
        for outlet in outlets {
            if locked.contains(&outlet) {
                trace!("  Change {:?} blocked by locked interface {:?}", change, outlet);
                return Ok(None);
            }
            let mut nodes = vec![(outlet.node, InOut::Out(outlet.slot))];
            for inlet in model.outlet_successors(outlet) {
                nodes.push((inlet.node, InOut::In(inlet.slot)));
            }
            for (node_id, io) in nodes {
                if Some(node_id) == emitter {
                    continue;
                }
                let node = model.node(node_id);
                let more = node
                    .op
                    .change_axes(model, node, io, &c.op)
                    .with_context(|| format!("Propagating {:?} to node {}", change, node))?;
                if more.is_none() {
                    trace!("    Propagation of {:?} blocked by {}", change, node);
                    return Ok(None);
                }
                let AxisChangeConsequence { substitute_op, wire_changes } = more.unwrap();
                trace!("    Change {:?} enters {} from {:?}", c.op, node, io);
                trace!("       propagates as {:?}", wire_changes);
                if let Some(op) = substitute_op {
                    trace!("       replace op by {:?}", op);
                    changed_ops.insert(node.id, op);
                }
                for (wire, op) in wire_changes.into_iter() {
                    let outlet = wire.as_outlet(node);
                    match changed_wires.entry(outlet) {
                        Entry::Vacant(entry) => {
                            trace!("         {:?} {:?} change on {:?} is new", wire, op, outlet);
                            entry.insert(op.clone());
                            todo_changes.push((AxisChange { outlet, op }, Some(node_id)));
                        }
                        Entry::Occupied(previous) => {
                            if *previous.get() == op {
                                trace!(
                                    "         {:?} {:?} change on {:?} already done",
                                    wire,
                                    op,
                                    outlet
                                );
                            } else {
                                trace!(
                                    "         {:?} {:?} change on {:?} conflicting with {:?}. Blocked.",
                                    wire,
                                    op,
                                    outlet,
                                    previous
                                );
                                return Ok(None);
                            }
                        }
                    }
                }
            }
        }
    }
    trace!("Translating {:?} to patch", change);
    let mut patch = TypedModelPatch::new(format!("{:?}", change));
    let mut replaced_wires: HashMap<OutletId, OutletId> = HashMap::default();
    let nodes_to_replace = changed_wires
        .keys()
        .map(|o| o.node)
        .chain(changed_ops.keys().copied())
        .collect::<std::collections::HashSet<usize>>();
    for node_id in model.eval_order()? {
        let node = model.node(node_id);
        if nodes_to_replace.contains(&node_id) {
            let mut inputs = tvec!();
            for orig in &node.inputs {
                let tgt = replaced_wires
                    .entry(*orig)
                    .or_insert_with(|| patch.tap_model(model, *orig).unwrap());
                inputs.push(*tgt);
            }
            let op: Box<dyn TypedOp> =
                changed_ops.get(&node_id).cloned().unwrap_or_else(|| node.op.clone());
            let new_wires = patch.wire_node(&node.name, op, &inputs)?;
            if new_wires.len() == 1
                && patch.node(new_wires[0].node).op_is::<crate::ops::source::TypedSource>()
            {
                patch.inputs.insert(new_wires[0].node, node_id);
            }
            for (ix, w) in new_wires.iter().enumerate() {
                replaced_wires.insert((node_id, ix).into(), *w);
            }
        } else {
            for orig in &node.inputs {
                if let Some(replacement) = replaced_wires.get(orig) {
                    patch.shunt_outside(model, *orig, *replacement)?;
                }
            }
        }
    }
    for output in model.output_outlets()? {
        if let Some(replacement) = replaced_wires.get(output) {
            unsafe {
                patch.shunt_outside_unchecked(*output, *replacement)?;
            }
        }
    }
    let mut interface_change = tvec!();
    for (ix, input) in model.input_outlets()?.iter().enumerate() {
        if let Some(change) = changed_wires.get(input) {
            interface_change.push((InOut::In(ix), change.clone()));
        }
    }
    for (ix, output) in model.output_outlets()?.iter().enumerate() {
        if let Some(change) = changed_wires.get(output) {
            interface_change.push((InOut::Out(ix), change.clone()));
        }
    }
    debug_assert!(
        patch.model.nodes.iter().map(|n| &n.name).collect::<std::collections::HashSet<_>>().len()
            == patch.model.nodes.len()
    );
    Ok(Some((patch, interface_change)))
}

Check that this node produce the same outputs as other.

Examples found in repository?
src/optim/push_split_down.rs (line 23)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    fn next(&mut self, _session: &mut OptimizerSession, model: &TypedModel) -> TractResult<Option<TypedModelPatch>> {
        let mut patch = TypedModelPatch::default();
        for node in model.eval_order()? {
            for output in &model.node(node).outputs {
                for (a, b) in output.successors.iter().tuple_combinations() {
                    if patch.obliterate.contains(&b.node) {
                        continue;
                    }
                    let a = model.node(a.node);
                    let b = model.node(b.node);
                    if a.same_as(b) {
                        for slot in 0..b.outputs.len() {
                            let tap = patch.tap_model(model, OutletId::new(a.id, slot))?;
                            patch.shunt_outside(model, OutletId::new(b.id, slot), tap)?;
                            patch.obliterate(b.id)?;
                        }
                    }
                }
            }
        }
        Ok(Some(patch).filter(|p| !p.is_empty()))
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.