Struct tract_core::internal::f16
source · [−]#[repr(transparent)]pub struct f16(_);
Expand description
A 16-bit floating point type implementing the IEEE 754-2008 standard binary16
a.k.a half
format.
This 16-bit floating point type is intended for efficient storage where the full range and
precision of a larger floating point value is not required. Because f16
is primarily for
efficient storage, floating point operations such as addition, multiplication, etc. are not
implemented. Operations should be performed with f32
or higher-precision types and converted
to/from f16
as necessary.
Implementations
sourceimpl f16
impl f16
sourcepub const fn from_bits(bits: u16) -> f16
pub const fn from_bits(bits: u16) -> f16
Constructs a 16-bit floating point value from the raw bits.
sourcepub fn from_f32(value: f32) -> f16
pub fn from_f32(value: f32) -> f16
Constructs a 16-bit floating point value from a 32-bit floating point value.
If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
sourcepub const fn from_f32_const(value: f32) -> f16
pub const fn from_f32_const(value: f32) -> f16
Constructs a 16-bit floating point value from a 32-bit floating point value.
This function is identical to from_f32
except it never uses hardware
intrinsics, which allows it to be const
. from_f32
should be preferred
in any non-const
context.
If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
sourcepub fn from_f64(value: f64) -> f16
pub fn from_f64(value: f64) -> f16
Constructs a 16-bit floating point value from a 64-bit floating point value.
If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
sourcepub const fn from_f64_const(value: f64) -> f16
pub const fn from_f64_const(value: f64) -> f16
Constructs a 16-bit floating point value from a 64-bit floating point value.
This function is identical to from_f64
except it never uses hardware
intrinsics, which allows it to be const
. from_f64
should be preferred
in any non-const
context.
If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
sourcepub const fn to_le_bytes(self) -> [u8; 2]
pub const fn to_le_bytes(self) -> [u8; 2]
Returns the memory representation of the underlying bit representation as a byte array in little-endian byte order.
Examples
let bytes = f16::from_f32(12.5).to_le_bytes();
assert_eq!(bytes, [0x40, 0x4A]);
sourcepub const fn to_be_bytes(self) -> [u8; 2]
pub const fn to_be_bytes(self) -> [u8; 2]
Returns the memory representation of the underlying bit representation as a byte array in big-endian (network) byte order.
Examples
let bytes = f16::from_f32(12.5).to_be_bytes();
assert_eq!(bytes, [0x4A, 0x40]);
sourcepub const fn to_ne_bytes(self) -> [u8; 2]
pub const fn to_ne_bytes(self) -> [u8; 2]
Returns the memory representation of the underlying bit representation as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should use
to_be_bytes
or to_le_bytes
, as appropriate,
instead.
Examples
let bytes = f16::from_f32(12.5).to_ne_bytes();
assert_eq!(bytes, if cfg!(target_endian = "big") {
[0x4A, 0x40]
} else {
[0x40, 0x4A]
});
sourcepub const fn from_le_bytes(bytes: [u8; 2]) -> f16
pub const fn from_le_bytes(bytes: [u8; 2]) -> f16
Creates a floating point value from its representation as a byte array in little endian.
Examples
let value = f16::from_le_bytes([0x40, 0x4A]);
assert_eq!(value, f16::from_f32(12.5));
sourcepub const fn from_be_bytes(bytes: [u8; 2]) -> f16
pub const fn from_be_bytes(bytes: [u8; 2]) -> f16
Creates a floating point value from its representation as a byte array in big endian.
Examples
let value = f16::from_be_bytes([0x4A, 0x40]);
assert_eq!(value, f16::from_f32(12.5));
sourcepub const fn from_ne_bytes(bytes: [u8; 2]) -> f16
pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16
Creates a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code likely wants to use
from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
[0x4A, 0x40]
} else {
[0x40, 0x4A]
});
assert_eq!(value, f16::from_f32(12.5));
sourcepub fn to_f32(self) -> f32
pub fn to_f32(self) -> f32
Converts a f16
value into a f32
value.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 32-bit floating point.
sourcepub const fn to_f32_const(self) -> f32
pub const fn to_f32_const(self) -> f32
Converts a f16
value into a f32
value.
This function is identical to to_f32
except it never uses hardware
intrinsics, which allows it to be const
. to_f32
should be preferred
in any non-const
context.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 32-bit floating point.
sourcepub fn to_f64(self) -> f64
pub fn to_f64(self) -> f64
Converts a f16
value into a f64
value.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 64-bit floating point.
sourcepub const fn to_f64_const(self) -> f64
pub const fn to_f64_const(self) -> f64
Converts a f16
value into a f64
value.
This function is identical to to_f64
except it never uses hardware
intrinsics, which allows it to be const
. to_f64
should be preferred
in any non-const
context.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 64-bit floating point.
sourcepub const fn is_nan(self) -> bool
pub const fn is_nan(self) -> bool
Returns true
if this value is NaN
and false
otherwise.
Examples
let nan = f16::NAN;
let f = f16::from_f32(7.0_f32);
assert!(nan.is_nan());
assert!(!f.is_nan());
sourcepub const fn is_infinite(self) -> bool
pub const fn is_infinite(self) -> bool
Returns true
if this value is ±∞ and false
.
otherwise.
Examples
let f = f16::from_f32(7.0f32);
let inf = f16::INFINITY;
let neg_inf = f16::NEG_INFINITY;
let nan = f16::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
sourcepub const fn is_finite(self) -> bool
pub const fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN
.
Examples
let f = f16::from_f32(7.0f32);
let inf = f16::INFINITY;
let neg_inf = f16::NEG_INFINITY;
let nan = f16::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
sourcepub const fn is_normal(self) -> bool
pub const fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal, or NaN
.
Examples
let min = f16::MIN_POSITIVE;
let max = f16::MAX;
let lower_than_min = f16::from_f32(1.0e-10_f32);
let zero = f16::from_f32(0.0_f32);
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f16::NAN.is_normal());
assert!(!f16::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
sourcepub const fn classify(self) -> FpCategory
pub const fn classify(self) -> FpCategory
Returns the floating point category of the number.
If only one property is going to be tested, it is generally faster to use the specific predicate instead.
Examples
use std::num::FpCategory;
let num = f16::from_f32(12.4_f32);
let inf = f16::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
sourcepub const fn signum(self) -> f16
pub const fn signum(self) -> f16
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNaN
Examples
let f = f16::from_f32(3.5_f32);
assert_eq!(f.signum(), f16::from_f32(1.0));
assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
assert!(f16::NAN.signum().is_nan());
sourcepub const fn is_sign_positive(self) -> bool
pub const fn is_sign_positive(self) -> bool
Returns true
if and only if self
has a positive sign, including +0.0
, NaNs
with a
positive sign bit and +∞.
Examples
let nan = f16::NAN;
let f = f16::from_f32(7.0_f32);
let g = f16::from_f32(-7.0_f32);
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// `NaN` can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());
sourcepub const fn is_sign_negative(self) -> bool
pub const fn is_sign_negative(self) -> bool
Returns true
if and only if self
has a negative sign, including -0.0
, NaNs
with a
negative sign bit and −∞.
Examples
let nan = f16::NAN;
let f = f16::from_f32(7.0f32);
let g = f16::from_f32(-7.0f32);
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// `NaN` can be either positive or negative
assert!(nan.is_sign_positive() != nan.is_sign_negative());
sourcepub const fn copysign(self, sign: f16) -> f16
pub const fn copysign(self, sign: f16) -> f16
Returns a number composed of the magnitude of self
and the sign of sign
.
Equal to self
if the sign of self
and sign
are the same, otherwise equal to -self
.
If self
is NaN, then NaN with the sign of sign
is returned.
Examples
let f = f16::from_f32(3.5);
assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
sourcepub fn max(self, other: f16) -> f16
pub fn max(self, other: f16) -> f16
Returns the maximum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
Examples
let x = f16::from_f32(1.0);
let y = f16::from_f32(2.0);
assert_eq!(x.max(y), y);
sourcepub fn min(self, other: f16) -> f16
pub fn min(self, other: f16) -> f16
Returns the minimum of the two numbers.
If one of the arguments is NaN, then the other argument is returned.
Examples
let x = f16::from_f32(1.0);
let y = f16::from_f32(2.0);
assert_eq!(x.min(y), x);
sourcepub fn clamp(self, min: f16, max: f16) -> f16
pub fn clamp(self, min: f16, max: f16) -> f16
Restrict a value to a certain interval unless it is NaN.
Returns max
if self
is greater than max
, and min
if self
is less than min
.
Otherwise this returns self
.
Note that this function returns NaN if the initial value was NaN as well.
Panics
Panics if min > max
, min
is NaN, or max
is NaN.
Examples
assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
sourcepub const EPSILON: f16 = f16(5120u16)
pub const EPSILON: f16 = f16(5120u16)
f16
machine epsilon value
This is the difference between 1.0 and the next largest representable number.
sourcepub const MANTISSA_DIGITS: u32 = 11u32
pub const MANTISSA_DIGITS: u32 = 11u32
Number of f16
significant digits in base 2
sourcepub const MAX_10_EXP: i32 = 4i32
pub const MAX_10_EXP: i32 = 4i32
Maximum possible f16
power of 10 exponent
sourcepub const MIN_10_EXP: i32 = -4i32
pub const MIN_10_EXP: i32 = -4i32
Minimum possible normal f16
power of 10 exponent
sourcepub const MIN_EXP: i32 = -13i32
pub const MIN_EXP: i32 = -13i32
One greater than the minimum possible normal f16
power of 2 exponent
sourcepub const MIN_POSITIVE: f16 = f16(1024u16)
pub const MIN_POSITIVE: f16 = f16(1024u16)
Smallest positive normal f16
value
sourcepub const NEG_INFINITY: f16 = f16(64512u16)
pub const NEG_INFINITY: f16 = f16(64512u16)
f16
negative infinity (-∞)
sourcepub const MIN_POSITIVE_SUBNORMAL: f16 = f16(1u16)
pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(1u16)
Minimum positive subnormal f16
value
sourcepub const MAX_SUBNORMAL: f16 = f16(1023u16)
pub const MAX_SUBNORMAL: f16 = f16(1023u16)
Maximum subnormal f16
value
sourcepub const FRAC_1_SQRT_2: f16 = f16(14760u16)
pub const FRAC_1_SQRT_2: f16 = f16(14760u16)
f16
1/√2
sourcepub const FRAC_2_SQRT_PI: f16 = f16(15491u16)
pub const FRAC_2_SQRT_PI: f16 = f16(15491u16)
f16
2/√π
Trait Implementations
sourceimpl AddAssign<&f16> for f16
impl AddAssign<&f16> for f16
sourcefn add_assign(&mut self, rhs: &f16)
fn add_assign(&mut self, rhs: &f16)
Performs the +=
operation. Read more
sourceimpl AddAssign<f16> for f16
impl AddAssign<f16> for f16
sourcefn add_assign(&mut self, rhs: f16)
fn add_assign(&mut self, rhs: f16)
Performs the +=
operation. Read more
sourceimpl AsPrimitive<f16> for f16
impl AsPrimitive<f16> for f16
sourceimpl AsPrimitive<f16> for f32
impl AsPrimitive<f16> for f32
sourceimpl AsPrimitive<f16> for f64
impl AsPrimitive<f16> for f64
sourceimpl AsPrimitive<f16> for i16
impl AsPrimitive<f16> for i16
sourceimpl AsPrimitive<f16> for i32
impl AsPrimitive<f16> for i32
sourceimpl AsPrimitive<f16> for i64
impl AsPrimitive<f16> for i64
sourceimpl AsPrimitive<f16> for i8
impl AsPrimitive<f16> for i8
sourceimpl AsPrimitive<f16> for isize
impl AsPrimitive<f16> for isize
sourceimpl AsPrimitive<f16> for u16
impl AsPrimitive<f16> for u16
sourceimpl AsPrimitive<f16> for u32
impl AsPrimitive<f16> for u32
sourceimpl AsPrimitive<f16> for u64
impl AsPrimitive<f16> for u64
sourceimpl AsPrimitive<f16> for u8
impl AsPrimitive<f16> for u8
sourceimpl AsPrimitive<f16> for usize
impl AsPrimitive<f16> for usize
sourceimpl AsPrimitive<f32> for f16
impl AsPrimitive<f32> for f16
sourceimpl AsPrimitive<f64> for f16
impl AsPrimitive<f64> for f16
sourceimpl AsPrimitive<i16> for f16
impl AsPrimitive<i16> for f16
sourceimpl AsPrimitive<i32> for f16
impl AsPrimitive<i32> for f16
sourceimpl AsPrimitive<i64> for f16
impl AsPrimitive<i64> for f16
sourceimpl AsPrimitive<i8> for f16
impl AsPrimitive<i8> for f16
sourceimpl AsPrimitive<isize> for f16
impl AsPrimitive<isize> for f16
sourceimpl AsPrimitive<u16> for f16
impl AsPrimitive<u16> for f16
sourceimpl AsPrimitive<u32> for f16
impl AsPrimitive<u32> for f16
sourceimpl AsPrimitive<u64> for f16
impl AsPrimitive<u64> for f16
sourceimpl AsPrimitive<u8> for f16
impl AsPrimitive<u8> for f16
sourceimpl AsPrimitive<usize> for f16
impl AsPrimitive<usize> for f16
sourceimpl DivAssign<&f16> for f16
impl DivAssign<&f16> for f16
sourcefn div_assign(&mut self, rhs: &f16)
fn div_assign(&mut self, rhs: &f16)
Performs the /=
operation. Read more
sourceimpl DivAssign<f16> for f16
impl DivAssign<f16> for f16
sourcefn div_assign(&mut self, rhs: f16)
fn div_assign(&mut self, rhs: f16)
Performs the /=
operation. Read more
sourceimpl Float for f16
impl Float for f16
sourcefn neg_infinity() -> f16
fn neg_infinity() -> f16
Returns the negative infinite value. Read more
sourcefn min_value() -> f16
fn min_value() -> f16
Returns the smallest finite value that this type can represent. Read more
sourcefn min_positive_value() -> f16
fn min_positive_value() -> f16
Returns the smallest positive, normalized value that this type can represent. Read more
sourcefn is_infinite(self) -> bool
fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity and
false otherwise. Read more
sourcefn classify(self) -> FpCategory
fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead. Read more
sourcefn round(self) -> f16
fn round(self) -> f16
Returns the nearest integer to a number. Round half-way cases away from
0.0
. Read more
sourcefn abs(self) -> f16
fn abs(self) -> f16
Computes the absolute value of self
. Returns Float::nan()
if the
number is Float::nan()
. Read more
sourcefn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
Returns true
if self
is positive, including +0.0
,
Float::infinity()
, and since Rust 1.20 also Float::nan()
. Read more
sourcefn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
Returns true
if self
is negative, including -0.0
,
Float::neg_infinity()
, and since Rust 1.20 also -Float::nan()
. Read more
sourcefn mul_add(self, a: f16, b: f16) -> f16
fn mul_add(self, a: f16, b: f16) -> f16
Fused multiply-add. Computes (self * a) + b
with only one rounding
error, yielding a more accurate result than an unfused multiply-add. Read more
sourcefn log(self, base: f16) -> f16
fn log(self, base: f16) -> f16
Returns the logarithm of the number with respect to an arbitrary base. Read more
sourcefn to_degrees(self) -> f16
fn to_degrees(self) -> f16
Converts radians to degrees. Read more
sourcefn to_radians(self) -> f16
fn to_radians(self) -> f16
Converts degrees to radians. Read more
sourcefn hypot(self, other: f16) -> f16
fn hypot(self, other: f16) -> f16
Calculate the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
. Read more
sourcefn asin(self) -> f16
fn asin(self) -> f16
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn acos(self) -> f16
fn acos(self) -> f16
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn atan(self) -> f16
fn atan(self) -> f16
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2]; Read more
sourcefn atan2(self, other: f16) -> f16
fn atan2(self, other: f16) -> f16
Computes the four quadrant arctangent of self
(y
) and other
(x
). Read more
sourcefn sin_cos(self) -> (f16, f16)
fn sin_cos(self) -> (f16, f16)
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
. Read more
sourcefn exp_m1(self) -> f16
fn exp_m1(self) -> f16
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero. Read more
sourcefn ln_1p(self) -> f16
fn ln_1p(self) -> f16
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately. Read more
sourceimpl FloatConst for f16
impl FloatConst for f16
sourcefn FRAC_1_SQRT_2() -> f16
fn FRAC_1_SQRT_2() -> f16
Return 1.0 / sqrt(2.0)
.
sourcefn FRAC_2_SQRT_PI() -> f16
fn FRAC_2_SQRT_PI() -> f16
Return 2.0 / sqrt(π)
.
sourcefn LOG10_2() -> f16 where
f16: Sized,
f16: Div<f16>,
<f16 as Div<f16>>::Output == f16,
fn LOG10_2() -> f16 where
f16: Sized,
f16: Div<f16>,
<f16 as Div<f16>>::Output == f16,
Return log10(2.0)
.
sourceimpl FloatCore for f16
impl FloatCore for f16
sourcefn neg_infinity() -> f16
fn neg_infinity() -> f16
Returns negative infinity. Read more
sourcefn min_value() -> f16
fn min_value() -> f16
Returns the smallest finite value that this type can represent. Read more
sourcefn min_positive_value() -> f16
fn min_positive_value() -> f16
Returns the smallest positive, normalized value that this type can represent. Read more
sourcefn is_infinite(self) -> bool
fn is_infinite(self) -> bool
Returns true
if the number is infinite. Read more
sourcefn is_normal(self) -> bool
fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal or NaN. Read more
sourcefn classify(self) -> FpCategory
fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead. Read more
sourcefn round(self) -> f16
fn round(self) -> f16
Returns the nearest integer to a number. Round half-way cases away from 0.0
. Read more
sourcefn abs(self) -> f16
fn abs(self) -> f16
Computes the absolute value of self
. Returns FloatCore::nan()
if the
number is FloatCore::nan()
. Read more
sourcefn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
Returns true
if self
is positive, including +0.0
and
FloatCore::infinity()
, and since Rust 1.20 also
FloatCore::nan()
. Read more
sourcefn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
Returns true
if self
is negative, including -0.0
and
FloatCore::neg_infinity()
, and since Rust 1.20 also
-FloatCore::nan()
. Read more
sourcefn to_degrees(self) -> f16
fn to_degrees(self) -> f16
Converts to degrees, assuming the number is in radians. Read more
sourcefn to_radians(self) -> f16
fn to_radians(self) -> f16
Converts to radians, assuming the number is in degrees. Read more
sourceimpl FromPrimitive for f16
impl FromPrimitive for f16
sourcefn from_i64(n: i64) -> Option<f16>
fn from_i64(n: i64) -> Option<f16>
Converts an i64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u64(n: u64) -> Option<f16>
fn from_u64(n: u64) -> Option<f16>
Converts an u64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i8(n: i8) -> Option<f16>
fn from_i8(n: i8) -> Option<f16>
Converts an i8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u8(n: u8) -> Option<f16>
fn from_u8(n: u8) -> Option<f16>
Converts an u8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i16(n: i16) -> Option<f16>
fn from_i16(n: i16) -> Option<f16>
Converts an i16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u16(n: u16) -> Option<f16>
fn from_u16(n: u16) -> Option<f16>
Converts an u16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i32(n: i32) -> Option<f16>
fn from_i32(n: i32) -> Option<f16>
Converts an i32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u32(n: u32) -> Option<f16>
fn from_u32(n: u32) -> Option<f16>
Converts an u32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_f32(n: f32) -> Option<f16>
fn from_f32(n: f32) -> Option<f16>
Converts a f32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_f64(n: f64) -> Option<f16>
fn from_f64(n: f64) -> Option<f16>
Converts a f64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_isize(n: isize) -> Option<Self>
fn from_isize(n: isize) -> Option<Self>
Converts an isize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i128(n: i128) -> Option<Self>
fn from_i128(n: i128) -> Option<Self>
Converts an i128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_usize(n: usize) -> Option<Self>
fn from_usize(n: usize) -> Option<Self>
Converts a usize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourceimpl FromStr for f16
impl FromStr for f16
type Err = ParseFloatError
type Err = ParseFloatError
The associated error which can be returned from parsing.
sourceimpl MulAssign<&f16> for f16
impl MulAssign<&f16> for f16
sourcefn mul_assign(&mut self, rhs: &f16)
fn mul_assign(&mut self, rhs: &f16)
Performs the *=
operation. Read more
sourceimpl MulAssign<f16> for f16
impl MulAssign<f16> for f16
sourcefn mul_assign(&mut self, rhs: f16)
fn mul_assign(&mut self, rhs: f16)
Performs the *=
operation. Read more
sourceimpl Num for f16
impl Num for f16
type FromStrRadixErr = <f32 as Num>::FromStrRadixErr
sourcefn from_str_radix(
str: &str,
radix: u32
) -> Result<f16, <f16 as Num>::FromStrRadixErr>
fn from_str_radix(
str: &str,
radix: u32
) -> Result<f16, <f16 as Num>::FromStrRadixErr>
Convert from a string and radix (typically 2..=36
). Read more
sourceimpl PartialOrd<f16> for f16
impl PartialOrd<f16> for f16
sourcefn partial_cmp(&self, other: &f16) -> Option<Ordering>
fn partial_cmp(&self, other: &f16) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
sourcefn lt(&self, other: &f16) -> bool
fn lt(&self, other: &f16) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
sourcefn le(&self, other: &f16) -> bool
fn le(&self, other: &f16) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
sourceimpl RemAssign<&f16> for f16
impl RemAssign<&f16> for f16
sourcefn rem_assign(&mut self, rhs: &f16)
fn rem_assign(&mut self, rhs: &f16)
Performs the %=
operation. Read more
sourceimpl RemAssign<f16> for f16
impl RemAssign<f16> for f16
sourcefn rem_assign(&mut self, rhs: f16)
fn rem_assign(&mut self, rhs: f16)
Performs the %=
operation. Read more
sourceimpl ScaleShiftAndRound for f16
impl ScaleShiftAndRound for f16
sourceimpl SloppyHash for f16
impl SloppyHash for f16
fn sloppy_hash<S: Hasher>(&self, state: &mut S)
sourceimpl SubAssign<&f16> for f16
impl SubAssign<&f16> for f16
sourcefn sub_assign(&mut self, rhs: &f16)
fn sub_assign(&mut self, rhs: &f16)
Performs the -=
operation. Read more
sourceimpl SubAssign<f16> for f16
impl SubAssign<f16> for f16
sourcefn sub_assign(&mut self, rhs: f16)
fn sub_assign(&mut self, rhs: f16)
Performs the -=
operation. Read more
sourceimpl ToPrimitive for f16
impl ToPrimitive for f16
sourcefn to_i64(&self) -> Option<i64>
fn to_i64(&self) -> Option<i64>
Converts the value of self
to an i64
. If the value cannot be
represented by an i64
, then None
is returned. Read more
sourcefn to_u64(&self) -> Option<u64>
fn to_u64(&self) -> Option<u64>
Converts the value of self
to a u64
. If the value cannot be
represented by a u64
, then None
is returned. Read more
sourcefn to_i8(&self) -> Option<i8>
fn to_i8(&self) -> Option<i8>
Converts the value of self
to an i8
. If the value cannot be
represented by an i8
, then None
is returned. Read more
sourcefn to_u8(&self) -> Option<u8>
fn to_u8(&self) -> Option<u8>
Converts the value of self
to a u8
. If the value cannot be
represented by a u8
, then None
is returned. Read more
sourcefn to_i16(&self) -> Option<i16>
fn to_i16(&self) -> Option<i16>
Converts the value of self
to an i16
. If the value cannot be
represented by an i16
, then None
is returned. Read more
sourcefn to_u16(&self) -> Option<u16>
fn to_u16(&self) -> Option<u16>
Converts the value of self
to a u16
. If the value cannot be
represented by a u16
, then None
is returned. Read more
sourcefn to_i32(&self) -> Option<i32>
fn to_i32(&self) -> Option<i32>
Converts the value of self
to an i32
. If the value cannot be
represented by an i32
, then None
is returned. Read more
sourcefn to_u32(&self) -> Option<u32>
fn to_u32(&self) -> Option<u32>
Converts the value of self
to a u32
. If the value cannot be
represented by a u32
, then None
is returned. Read more
sourcefn to_f32(&self) -> Option<f32>
fn to_f32(&self) -> Option<f32>
Converts the value of self
to an f32
. Overflows may map to positive
or negative inifinity, otherwise None
is returned if the value cannot
be represented by an f32
. Read more
sourcefn to_f64(&self) -> Option<f64>
fn to_f64(&self) -> Option<f64>
Converts the value of self
to an f64
. Overflows may map to positive
or negative inifinity, otherwise None
is returned if the value cannot
be represented by an f64
. Read more
sourcefn to_isize(&self) -> Option<isize>
fn to_isize(&self) -> Option<isize>
Converts the value of self
to an isize
. If the value cannot be
represented by an isize
, then None
is returned. Read more
sourcefn to_i128(&self) -> Option<i128>
fn to_i128(&self) -> Option<i128>
Converts the value of self
to an i128
. If the value cannot be
represented by an i128
(i64
under the default implementation), then
None
is returned. Read more
impl Copy for f16
impl LADatum for f16
Auto Trait Implementations
impl RefUnwindSafe for f16
impl Send for f16
impl Sync for f16
impl Unpin for f16
impl UnwindSafe for f16
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ClampCast for T where
T: 'static + PartialOrd<T> + Copy,
impl<T> ClampCast for T where
T: 'static + PartialOrd<T> + Copy,
fn clamp_cast<O>(self) -> O where
Self: AsPrimitive<O> + Datum,
O: AsPrimitive<Self> + Bounded + Datum,
sourceimpl<T> ComplexFloat for T where
T: Float + FloatConst,
impl<T> ComplexFloat for T where
T: Float + FloatConst,
type Real = T
type Real = T
The type used to represent the real coefficients of this complex number.
sourcefn re(self) -> <T as ComplexFloat>::Real
fn re(self) -> <T as ComplexFloat>::Real
Returns the real part of the number.
sourcefn im(self) -> <T as ComplexFloat>::Real
fn im(self) -> <T as ComplexFloat>::Real
Returns the imaginary part of the number.
sourcefn l1_norm(&self) -> <T as ComplexFloat>::Real
fn l1_norm(&self) -> <T as ComplexFloat>::Real
Returns the L1 norm |re| + |im|
– the Manhattan distance from the origin. Read more
sourcefn arg(self) -> <T as ComplexFloat>::Real
fn arg(self) -> <T as ComplexFloat>::Real
Computes the argument of the number.
sourcefn powc(
self,
exp: Complex<<T as ComplexFloat>::Real>
) -> Complex<<T as ComplexFloat>::Real>
fn powc(
self,
exp: Complex<<T as ComplexFloat>::Real>
) -> Complex<<T as ComplexFloat>::Real>
Raises self
to a complex power.
sourcefn expf(self, base: <T as ComplexFloat>::Real) -> T
fn expf(self, base: <T as ComplexFloat>::Real) -> T
Returns base^(self)
.
sourcefn is_infinite(self) -> bool
fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity and
false otherwise. Read more
sourcefn recip(self) -> T
fn recip(self) -> T
Take the reciprocal (inverse) of a number, 1/x
. See also Complex::finv.
sourcefn log(self, base: T) -> T
fn log(self, base: T) -> T
Returns the logarithm of the number with respect to an arbitrary base.
sourcefn asin(self) -> T
fn asin(self) -> T
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn acos(self) -> T
fn acos(self) -> T
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn atan(self) -> T
fn atan(self) -> T
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2]; Read more
sourcefn abs(self) -> T
fn abs(self) -> T
Returns the absolute value of the number. See also Complex::norm
sourceimpl<T> Downcast for T where
T: Any,
impl<T> Downcast for T where
T: Any,
sourcefn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<R, Global>impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<R, Global>impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;
Convert Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
. Read more
sourcefn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
. Read more
sourcefn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert &Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s. Read more
sourcefn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert &mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s. Read more
sourceimpl<T> DowncastSync for T where
T: Any + Send + Sync,
impl<T> DowncastSync for T where
T: Any + Send + Sync,
sourceimpl<T> LowerBounded for T where
T: Bounded,
impl<T> LowerBounded for T where
T: Bounded,
sourceimpl<T> Real for T where
T: Float,
impl<T> Real for T where
T: Float,
sourcefn min_positive_value() -> T
fn min_positive_value() -> T
Returns the smallest positive, normalized value that this type can represent. Read more
sourcefn round(self) -> T
fn round(self) -> T
Returns the nearest integer to a number. Round half-way cases away from
0.0
. Read more
sourcefn abs(self) -> T
fn abs(self) -> T
Computes the absolute value of self
. Returns Float::nan()
if the
number is Float::nan()
. Read more
sourcefn is_sign_positive(self) -> bool
fn is_sign_positive(self) -> bool
Returns true
if self
is positive, including +0.0
,
Float::infinity()
, and with newer versions of Rust f64::NAN
. Read more
sourcefn is_sign_negative(self) -> bool
fn is_sign_negative(self) -> bool
Returns true
if self
is negative, including -0.0
,
Float::neg_infinity()
, and with newer versions of Rust -f64::NAN
. Read more
sourcefn mul_add(self, a: T, b: T) -> T
fn mul_add(self, a: T, b: T) -> T
Fused multiply-add. Computes (self * a) + b
with only one rounding
error, yielding a more accurate result than an unfused multiply-add. Read more
sourcefn log(self, base: T) -> T
fn log(self, base: T) -> T
Returns the logarithm of the number with respect to an arbitrary base. Read more
sourcefn to_degrees(self) -> T
fn to_degrees(self) -> T
Converts radians to degrees. Read more
sourcefn to_radians(self) -> T
fn to_radians(self) -> T
Converts degrees to radians. Read more
sourcefn hypot(self, other: T) -> T
fn hypot(self, other: T) -> T
Calculate the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
. Read more
sourcefn asin(self) -> T
fn asin(self) -> T
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn acos(self) -> T
fn acos(self) -> T
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn atan(self) -> T
fn atan(self) -> T
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2]; Read more
sourcefn atan2(self, other: T) -> T
fn atan2(self, other: T) -> T
Computes the four quadrant arctangent of self
(y
) and other
(x
). Read more
sourcefn sin_cos(self) -> (T, T)
fn sin_cos(self) -> (T, T)
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
. Read more
sourcefn exp_m1(self) -> T
fn exp_m1(self) -> T
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero. Read more