Trait tract_core::internal::tract_ndarray::linalg::Dot [−][src]
Expand description
Matrix Multiplication
For two-dimensional arrays, the dot method computes the matrix multiplication.
Associated Types
Required methods
Implementors
impl<A, S, S2> Dot<ArrayBase<S2, Dim<[usize; 1]>>> for ArrayBase<S, Dim<[usize; 1]>> where
A: LinalgScalar,
S: Data<Elem = A>,
S2: Data<Elem = A>, [src]
impl<A, S, S2> Dot<ArrayBase<S2, Dim<[usize; 1]>>> for ArrayBase<S, Dim<[usize; 1]>> where
A: LinalgScalar,
S: Data<Elem = A>,
S2: Data<Elem = A>, [src]pub fn dot(&self, rhs: &ArrayBase<S2, Dim<[usize; 1]>>) -> A[src]
pub fn dot(&self, rhs: &ArrayBase<S2, Dim<[usize; 1]>>) -> A[src]Compute the dot product of one-dimensional arrays.
The dot product is a sum of the elementwise products (no conjugation of complex operands, and thus not their inner product).
Panics if the arrays are not of the same length.
Note: If enabled, uses blas dot for elements of f32, f64 when memory
layout allows.
type Output = A
impl<A, S, S2> Dot<ArrayBase<S2, Dim<[usize; 1]>>> for ArrayBase<S, Dim<[usize; 2]>> where
A: LinalgScalar,
S: Data<Elem = A>,
S2: Data<Elem = A>, [src]
impl<A, S, S2> Dot<ArrayBase<S2, Dim<[usize; 1]>>> for ArrayBase<S, Dim<[usize; 2]>> where
A: LinalgScalar,
S: Data<Elem = A>,
S2: Data<Elem = A>, [src]Perform the matrix multiplication of the rectangular array self and
column vector rhs.
The array shapes must agree in the way that
if self is M × N, then rhs is N.
Return a result array with shape M.
Panics if shapes are incompatible.
impl<A, S, S2> Dot<ArrayBase<S2, Dim<[usize; 2]>>> for ArrayBase<S, Dim<[usize; 1]>> where
A: LinalgScalar,
S: Data<Elem = A>,
S2: Data<Elem = A>, [src]
impl<A, S, S2> Dot<ArrayBase<S2, Dim<[usize; 2]>>> for ArrayBase<S, Dim<[usize; 1]>> where
A: LinalgScalar,
S: Data<Elem = A>,
S2: Data<Elem = A>, [src]pub fn dot(
&self,
rhs: &ArrayBase<S2, Dim<[usize; 2]>>
) -> ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>[src]
pub fn dot(
&self,
rhs: &ArrayBase<S2, Dim<[usize; 2]>>
) -> ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>[src]Perform the matrix multiplication of the row vector self and
rectangular matrix rhs.
The array shapes must agree in the way that
if self is M, then rhs is M × N.
Return a result array with shape N.
Panics if shapes are incompatible.