pub trait DecoderExt<A, E>: Decoder<Item = A, Error = E> {
// Provided methods
fn map<F, B>(self, f: F) -> DecoderMap<Self, F>
where F: Fn(A) -> B,
Self: Sized { ... }
fn map_into<B>(self) -> DecoderMapInto<Self, B>
where B: From<A>,
Self: Sized { ... }
fn try_map<F, B, EE>(self, f: F) -> DecoderTryMap<Self, F, EE>
where F: Fn(A) -> Result<B, EE>,
Self: Sized { ... }
fn try_map_into<B>(self) -> DecoderTryMapInto<Self, B, B::Error>
where B: TryFrom<A>,
Self: Sized { ... }
fn map_err<F, EE>(self, f: F) -> DecoderMapErr<Self, F>
where F: Fn(E) -> EE,
Self: Sized { ... }
fn then<DNext, B, EE>(self, next: DNext) -> DecoderThen<Self, DNext, A, EE>
where DNext: Decoder<Item = B, Error = EE>,
EE: From<E>,
Self: Sized { ... }
fn and_then<F, DNext, B, EE>(
self,
f: F,
) -> DecoderAndThen<Self, F, DNext, A, EE>
where F: Fn(&A) -> DNext,
DNext: Decoder<Item = B, Error = EE>,
EE: From<E>,
Self: Sized { ... }
fn boxed(self) -> DecoderBoxed<A, E>
where Self: Sized + 'static { ... }
}
Expand description
Extension of Decoder
with compositional operations.
Provided Methods§
Sourcefn map<F, B>(self, f: F) -> DecoderMap<Self, F>
fn map<F, B>(self, f: F) -> DecoderMap<Self, F>
Applies a function f
of type A -> B
over the decoded value when that is Ok(Some(a))
.
The function f
cannot fail. If you need a fallible mapping, then consider DecoderExt::try_map
.
§Examples
use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
struct Device(u8);
let device = uint8().map(Device).decode(&mut BytesMut::from("\x2A")).unwrap();
assert_eq!(device, Some(Device(42)));
Sourcefn map_into<B>(self) -> DecoderMapInto<Self, B>
fn map_into<B>(self) -> DecoderMapInto<Self, B>
Applies an B::from
A
conversion over the decoded value when that is Ok(Some(a))
.
The conversion cannot fail. If you need a fallible conversion, then consider DecoderExt::try_map_into
.
§Examples
use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
struct Device(u8);
impl From<u8> for Device {
fn from(value: u8) -> Self {
Self(value)
}
}
let device = uint8().map_into::<Device>().decode(&mut BytesMut::from("\x2A")).unwrap();
assert_eq!(device, Some(Device(42)));
Sourcefn try_map<F, B, EE>(self, f: F) -> DecoderTryMap<Self, F, EE>
fn try_map<F, B, EE>(self, f: F) -> DecoderTryMap<Self, F, EE>
Applies a fallible function f
of type A -> Result<B, EE>
over the decoded value when that is Ok(Some(a))
.
The function f
can fail and that’s handy when we interleave decoding with validation,
for instance, when mapping from a larger domain (e.g. u8
) into a smaller co-domain (e.g. Version::v1
).
If you don’t need a fallible mapping, then consider DecoderExt::map
.
The mapping can return an error type EE
other than E
as long as there is an implicit conversion From<E>
.
§Examples
use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
enum Version {
V1
}
impl TryFrom<u8> for Version {
type Error = std::io::Error;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
1 => Ok(Version::V1),
_ => Err(std::io::Error::from(std::io::ErrorKind::InvalidData))
}
}
}
let mut decoder = uint8().try_map(Version::try_from);
let version_ok = decoder.decode(&mut BytesMut::from("\x01")).unwrap();
assert_eq!(version_ok, Some(Version::V1));
let version_err = decoder.decode(&mut BytesMut::from("\x02")).unwrap_err();
assert_eq!(version_err.kind(), std::io::ErrorKind::InvalidData);
Sourcefn try_map_into<B>(self) -> DecoderTryMapInto<Self, B, B::Error>
fn try_map_into<B>(self) -> DecoderTryMapInto<Self, B, B::Error>
Applies an B::try_from
A
conversion over the decoded value when that is Ok(Some(a))
.
The conversion can fail and that’s handy when we interleave decoding with validation,
for instance, when mapping from a larger domain (e.g. u8
) into a smaller co-domain (e.g. Version::v1
).
If you don’t need a fallible conversion, then consider DecoderExt::map
.
§Examples
use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
enum Version {
V1
}
impl TryFrom<u8> for Version {
type Error = std::io::Error;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
1 => Ok(Version::V1),
_ => Err(std::io::Error::from(std::io::ErrorKind::InvalidData))
}
}
}
let mut decoder = uint8().try_map_into::<Version>();
let version_ok = decoder.decode(&mut BytesMut::from("\x01")).unwrap();
assert_eq!(version_ok, Some(Version::V1));
let version_err = decoder.decode(&mut BytesMut::from("\x02")).unwrap_err();
assert_eq!(version_err.kind(), std::io::ErrorKind::InvalidData);
Sourcefn map_err<F, EE>(self, f: F) -> DecoderMapErr<Self, F>
fn map_err<F, EE>(self, f: F) -> DecoderMapErr<Self, F>
Applies a function f
of type E -> EE
over the decoding error when that is Err(e)
.
That’s handy when we need to adapt errors across boundaries.
§Examples
use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
fn decoder_operation() -> impl Decoder<Item = Operation, Error = std::io::Error> {
}
enum Operation {
TurnOff, Turning
}
struct OperationError;
impl From<std::io::Error> for OperationError {
fn from(value: std::io::Error) -> Self {
Self
}
}
let err = decoder_operation().map_err(|_| OperationError).decode(&mut BytesMut::from("\x00")); // invalid operation number
assert_eq!(err, Err(OperationError));
Sourcefn then<DNext, B, EE>(self, next: DNext) -> DecoderThen<Self, DNext, A, EE>
fn then<DNext, B, EE>(self, next: DNext) -> DecoderThen<Self, DNext, A, EE>
Chains a decoder of B
on the remaining bytes after applying this decoder, then returns a pair of the individual values (a, b)
.
This enables the application of decoders in sequence where a step does not depend on its predecessor (when such a dependency exists, consider DecoderExt::and_then
.
The next decoder can return an error type EE
other than E
as long as there is an implicit conversion From<E>
.
§Examples
use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
let pair = uint8().then(uint8()).decode(&mut BytesMut::from("\x2A\x3B")).unwrap();
assert_eq!(pair, Some((0x2A, 0x3B)));
Sourcefn and_then<F, DNext, B, EE>(
self,
f: F,
) -> DecoderAndThen<Self, F, DNext, A, EE>
fn and_then<F, DNext, B, EE>( self, f: F, ) -> DecoderAndThen<Self, F, DNext, A, EE>
Chains a function f
of type &A -> Box<Decoder<Item = B, Error = E>>
over the decoded value when that is Ok(Some(a))
.
Contrary to DecoderExt::map
, the function f
can decide (dynamically) which decoder to return next according to a
, which enables complex behaviors
out of simple building blocks by defining dependency relationships between decoders.
e.g. first we decode the header of a message and use that information, say protocol version, to then select the appropriate
decoder among multiple candidates, say one per protocol version, for the body.
The next decoder can return an error type EE
other than E
as long as there is an implicit conversion From<E>
.
The function f
cannot fail.
Notice that f
can’t take ownership of the first value a
, hence the shared borrow, because otherwise it would not be possible to decode incomplete frames
without cloning or maybe saving incoming bytes and re-running this decoder. If you need access to the first value, use DecoderAndThen::first_value
or DecoderAndThen::first_value_as_mut
.
§Stateful decoders and multi-frames
Due to the stateful behaviour of this combinator, if you need to decode multiple frames, you’d need to DecoderAndThen::reset
between frames to clean up
the previous value a
and therefore its influence on b
.
§Examples
use tokio_util_codec_compose::{decode::{adaptors::DecoderBoxed, DecoderExt}, primitives::{uint8, uint16_be, uint16_le}};
fn payload_for_version(version: &u8) -> DecoderBoxed<u16, std::io::Error> {
if *version == 0x01 { uint16_be().boxed() } else { uint16_le().boxed() }
}
let mut decoder = uint8().and_then(payload_for_version);
let device_big_endian = decoder.decode(&mut BytesMut::from("\x01\x2A\x3B")).unwrap();
assert_eq!(device_big_endian, Some(0x2A3B));
decoder.reset();
let device_little_endian = decoder.decode(&mut BytesMut::from("\x00\x2A\x3B")).unwrap();
assert_eq!(device_little_endian, Some(0x3B2A));
Sourcefn boxed(self) -> DecoderBoxed<A, E>where
Self: Sized + 'static,
fn boxed(self) -> DecoderBoxed<A, E>where
Self: Sized + 'static,
Shorthand for boxing this decoder while also widening its type to ease inference and spelling.
That’s probably useful when combined with DecoderExt::and_then
where the continuation
yields decoders with different types.