tokio_linux_aio/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
// ===============================================================================================
// Copyright (c) 2018 Hans-Martin Will
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// ===============================================================================================
//! Tokio Bindings for Linux Kernel AIO
//!
//! This package provides an integration of Linux kernel-level asynchronous I/O to the
//! [Tokio platform](https://tokio.rs/).
//!
//! Linux kernel-level asynchronous I/O is different from the [Posix AIO library](http://man7.org/linux/man-pages/man7/aio.7.html).
//! Posix AIO is implemented using a pool of userland threads, which invoke regular, blocking system
//! calls to perform file I/O. [Linux kernel-level AIO](http://lse.sourceforge.net/io/aio.html), on the
//! other hand, provides kernel-level asynchronous scheduling of I/O operations to the underlying block device.
//!
//! The core abstraction exposed by this library is the `AioContext`, which essentially wraps
//! a kernel-level I/O submission queue with limited capacity. The capacity of the underlying queue
//! is a constructor argument when creating an instance of `AioContext`. Once created, the context
//! can be used to issue read and write requests. Each such invocations will create a suitable instance
//! of `futures::Future`, which can be executed within the context of Tokio.
//!
//! There's a few gotchas to be aware of when using this library:
//!
//! 1. Linux AIO requires the underlying file to be opened in direct mode (`O_DIRECT`), bypassing
//! any other buffering at the OS level. If you attempt to use this library on files opened regularly,
//! likely it won't work.
//!
//! 2. Because Linux AIO operates on files in direct mode, by corrollary the memory buffers associated
//! with read/write requests need to be suitable for direct DMA transfers. This means that those buffers
//! should be aligned to hardware page boundaries, and the memory needs to be mapped to pysical RAM.
//! The best way to accomplish this is to have a mmapped region that is locked in physical memory.
//!
//! 3. Due to the asynchronous nature of this library, memory buffers are represented using generic
//! handle types. For the purpose of the inner workings of this library, the important aspect is that
//! those handle types can be dereferenced into a `&[u8]` or, respectively, a `&mut [u8]` type. Because
//! we hand off those buffers to the kernel (and ultimately hardware DMA) it is mandatory that those
//! bytes slices have a fixed address in main memory during I/O processing.
//!
//! 4. The general idea is that those generic handle types for memory access can implement smart
//! pointer semantics. For example, a conceivable implementation of a memory handle type is a smart
//! pointer that acquires a write-lock on a page while a data transfer is in progress, and releases
//! such a lock once the operation has completed.
extern crate aio_bindings;
extern crate futures;
extern crate futures_cpupool;
extern crate libc;
extern crate memmap;
extern crate mio;
extern crate rand;
extern crate tokio;
use std::convert;
use std::error;
use std::fmt;
use std::io;
use std::mem;
use std::ops;
use std::ptr;
use std::os::unix::io::RawFd;
use libc::{c_long, c_void, mlock};
use futures::Future;
use ops::Deref;
// local modules
mod aio;
mod eventfd;
mod sync;
// -----------------------------------------------------------------------------------------------
// Bindings for Linux AIO start here
// -----------------------------------------------------------------------------------------------
// field values that we need to transfer into a kernel IOCB
struct IocbInfo {
// the I/O opcode
opcode: u32,
// file fd identifying the file to operate on
fd: RawFd,
// an absolute file offset, if applicable for the command
offset: u64,
// the base address of the transfer buffer, if applicable
buf: u64,
// the number of bytes to be transferred, if applicable
len: u64,
// flags to provide additional parameters
flags: u32,
}
// State information that is associated with an I/O request that is currently in flight.
#[derive(Debug)]
struct RequestState {
// Linux kernal I/O control block which can be submitted to io_submit
request: aio::iocb,
// Concurrency primitive to notify completion to the associated future
completed_receiver: futures::sync::oneshot::Receiver<c_long>,
// We have both sides of a oneshot channel here
completed_sender: Option<futures::sync::oneshot::Sender<c_long>>,
}
// Common data structures for futures returned by `AioContext`.
struct AioBaseFuture {
// reference to the `AioContext` that controls the submission queue for asynchronous I/O
context: std::sync::Arc<AioContextInner>,
// request information captured for the kernel request
iocb_info: IocbInfo,
// the associated request state
state: Option<Box<RequestState>>,
// acquire future
acquire_state: Option<sync::SemaphoreHandle>,
}
impl AioBaseFuture {
// Attempt to submit the I/O request; this may need to wait until a submission slot is
// available.
fn submit_request(&mut self) -> Result<futures::Async<()>, io::Error> {
if self.state.is_none() {
// See if we can secure a submission slot
if self.acquire_state.is_none() {
self.acquire_state = Some(self.context.have_capacity.acquire());
}
match self.acquire_state.as_mut().unwrap().poll() {
Err(err) => return Err(err),
Ok(futures::Async::NotReady) => return Ok(futures::Async::NotReady),
Ok(futures::Async::Ready(_)) => {
// retrieve a state container from the set of available ones and move it into the future
let mut guard = self.context.capacity.write();
match guard {
Ok(ref mut guard) => {
self.state = guard.state.pop();
}
Err(_) => panic!("TODO: Figure out how to handle this kind of error"),
}
}
}
assert!(self.state.is_some());
let state = self.state.as_mut().unwrap();
let state_addr = state.deref().deref() as *const RequestState;
// Fill in the iocb data structure to be submitted to the kernel
state.request.aio_data = unsafe { mem::transmute(state_addr) };
state.request.aio_resfd = self.context.completed_fd as u32;
state.request.aio_flags = aio::IOCB_FLAG_RESFD | self.iocb_info.flags;
state.request.aio_fildes = self.iocb_info.fd as u32;
state.request.aio_offset = self.iocb_info.offset as i64;
state.request.aio_buf = self.iocb_info.buf;
state.request.aio_nbytes = self.iocb_info.len;
state.request.aio_lio_opcode = self.iocb_info.opcode as u16;
// attach synchronization primitives that are used to indicate completion of this request
let (sender, receiver) = futures::sync::oneshot::channel();
state.completed_receiver = receiver;
state.completed_sender = Some(sender);
// submit the request
let mut request_ptr_array: [*mut aio::iocb; 1] =
[&mut state.request as *mut aio::iocb; 1];
let result = unsafe {
aio::io_submit(
self.context.context,
1,
&mut request_ptr_array[0] as *mut *mut aio::iocb,
)
};
// if we have submission error, capture it as future result
if result != 1 {
return Err(io::Error::last_os_error());
}
}
Ok(futures::Async::Ready(()))
}
// Attempt to retrieve the result of a previously submitted I/O request; this may need to
// wait until the I/O operation has been completed
fn retrieve_result(&mut self) -> Result<futures::Async<()>, io::Error> {
// Check if we have received a notification indicating completion of the I/O request
let result_code = match self.state.as_mut().unwrap().completed_receiver.poll() {
Err(err) => return Err(io::Error::new(io::ErrorKind::Other, err)),
Ok(futures::Async::NotReady) => return Ok(futures::Async::NotReady),
Ok(futures::Async::Ready(n)) => n,
};
// Release the kernel queue slot and the state variable that we just processed
match self.context.capacity.write() {
Ok(ref mut guard) => {
guard.state.push(self.state.take().unwrap());
}
Err(_) => panic!("TODO: Figure out how to handle this kind of error"),
}
// notify others that we release a state slot
self.context.have_capacity.release();
if result_code < 0 {
Err(io::Error::from_raw_os_error(result_code as i32))
} else {
Ok(futures::Async::Ready(()))
}
}
}
// Common future base type for all asynchronous operations supperted by this API
impl futures::Future for AioBaseFuture {
type Item = ();
type Error = io::Error;
fn poll(&mut self) -> Result<futures::Async<()>, io::Error> {
let result = self.submit_request();
match result {
Ok(futures::Async::Ready(())) => self.retrieve_result(),
Ok(futures::Async::NotReady) => Ok(futures::Async::NotReady),
Err(err) => Err(err),
}
}
}
/// An error type for I/O operations that allows us to return the memory handle in failure cases.
pub struct AioError<Handle> {
// The buffer handle that we want to return to the caller
pub buffer: Handle,
// The error value
pub error: io::Error,
}
impl<Handle> fmt::Debug for AioError<Handle> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.error.fmt(f)
}
}
impl<Handle> fmt::Display for AioError<Handle> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.error.fmt(f)
}
}
impl<Handle> error::Error for AioError<Handle> {
fn description(&self) -> &str {
self.error.description()
}
fn cause(&self) -> Option<&error::Error> {
self.error.cause()
}
}
/// Future returned as result of submitting a read request via `AioContext::read`.
pub struct AioReadResultFuture<ReadWriteHandle>
where
ReadWriteHandle: convert::AsMut<[u8]>,
{
// common AIO future state
base: AioBaseFuture,
// memory handle where data read from the underlying block device is being written to.
// Holding on to this value is important in the case where it implements Drop.
buffer: Option<ReadWriteHandle>,
}
impl<ReadWriteHandle> futures::Future for AioReadResultFuture<ReadWriteHandle>
where
ReadWriteHandle: convert::AsMut<[u8]>,
{
type Item = ReadWriteHandle;
type Error = AioError<ReadWriteHandle>;
fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
self.base
.poll()
.map(|val| val.map(|_| self.buffer.take().unwrap()))
.map_err(|err| AioError {
buffer: self.buffer.take().unwrap(),
error: err,
})
}
}
/// Future returned as result of submitting a write request via `AioContext::write`.
pub struct AioWriteResultFuture<ReadOnlyHandle>
where
ReadOnlyHandle: convert::AsRef<[u8]>,
{
// common AIO future state
base: AioBaseFuture,
// memory handle where data written to the underlying block device is being read from.
// Holding on to this value is important in the case where it implements Drop.
buffer: Option<ReadOnlyHandle>,
}
impl<ReadOnlyHandle> futures::Future for AioWriteResultFuture<ReadOnlyHandle>
where
ReadOnlyHandle: convert::AsRef<[u8]>,
{
type Item = ReadOnlyHandle;
type Error = AioError<ReadOnlyHandle>;
fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
self.base
.poll()
.map(|val| val.map(|_| self.buffer.take().unwrap()))
.map_err(|err| AioError {
buffer: self.buffer.take().unwrap(),
error: err,
})
}
}
/// Future returned as result of submitting a write request via `AioContext::sync` or
/// `AioContext::data_sync`.
pub struct AioSyncResultFuture
{
// common AIO future state
base: AioBaseFuture,
}
impl futures::Future for AioSyncResultFuture
{
type Item = ();
type Error = io::Error;
fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
self.base.poll()
}
}
// A future spawned as background task to retrieve I/O completion events from the kernel
// and distributing the results to the current futures in flight.
pub struct AioPollFuture {
// the context handle for retrieving AIO completions from the kernel
context: aio::aio_context_t,
// the eventfd on which the kernel will notify I/O completions
eventfd: eventfd::EventFd,
// a buffer to retrieve completion status from the kernel
events: Vec<aio::io_event>,
}
impl futures::Future for AioPollFuture {
type Item = ();
type Error = io::Error;
// This poll function will never return completion
fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
loop {
// check the eventfd for completed I/O operations
let available = match self.eventfd.read() {
Err(err) => return Err(err),
Ok(futures::Async::NotReady) => return Ok(futures::Async::NotReady),
Ok(futures::Async::Ready(value)) => value as usize,
};
assert!(available > 0);
self.events.clear();
unsafe {
let result = aio::io_getevents(
self.context,
available as c_long,
available as c_long,
self.events.as_mut_ptr(),
ptr::null_mut::<aio::timespec>(),
);
// adjust the vector size to the actual number of items returned
if result < 0 {
return Err(io::Error::last_os_error());
}
assert!(result as usize == available);
self.events.set_len(available);
};
// dispatch the retrieved events to the associated futures
for ref event in &self.events {
let request_state: &mut RequestState = unsafe { mem::transmute(event.data) };
request_state
.completed_sender
.take()
.unwrap()
.send(event.res)
.unwrap();
}
}
}
}
// Shared state within AioContext that is backing I/O requests as represented by the individual futures.
#[derive(Debug)]
struct Capacity {
// pre-allocated eventfds and iocbs that are associated with scheduled I/O requests
state: Vec<Box<RequestState>>,
}
impl Capacity {
fn new(nr: usize) -> Result<Capacity, io::Error> {
let mut state = Vec::with_capacity(nr);
// using a for loop to properly handle the error case
// range map collect would only allow for using unwrap(), thereby turning an error into a panic
for _ in 0..nr {
let (_, receiver) = futures::sync::oneshot::channel();
state.push(Box::new(RequestState {
request: unsafe { mem::zeroed() },
completed_receiver: receiver,
completed_sender: None,
}));
}
Ok(Capacity { state })
}
}
// The inner state, which is shared between the AioContext object returned to clients and
// used internally by futures in flight.
#[derive(Debug)]
struct AioContextInner {
// the context handle for submitting AIO requests to the kernel
context: aio::aio_context_t,
// the fd embedded in the completed eventfd, which can be passed to kernel functions;
// the handle is managed by the Eventfd object that is owned by the AioPollFuture
// that we spawn when creating an AioContext.
completed_fd: RawFd,
// do we have capacity?
have_capacity: sync::Semaphore,
// pre-allocated eventfds and a capacity semaphore
capacity: std::sync::RwLock<Capacity>,
// handle for the spawned background task; dropping it will cancel the task
// we are using an Option value with delayed initialization to keep the generic
// executor type parameter out of AioContextInner
poll_task_handle: Option<futures::sync::oneshot::SpawnHandle<(), io::Error>>,
}
impl AioContextInner {
fn new(fd: RawFd, nr: usize) -> Result<AioContextInner, io::Error> {
let mut context: aio::aio_context_t = 0;
unsafe {
if aio::io_setup(nr as c_long, &mut context) != 0 {
return Err(io::Error::last_os_error());
}
};
Ok(AioContextInner {
context,
capacity: std::sync::RwLock::new(Capacity::new(nr)?),
have_capacity: sync::Semaphore::new(nr),
completed_fd: fd,
poll_task_handle: None,
})
}
}
impl Drop for AioContextInner {
fn drop(&mut self) {
let result = unsafe { aio::io_destroy(self.context) };
assert!(result == 0);
}
}
/// AioContext provides a submission queue for asycnronous I/O operations to
/// block devices within the Linux kernel.
#[derive(Clone, Debug)]
pub struct AioContext {
inner: std::sync::Arc<AioContextInner>,
}
/// Synchronization levels associated with I/O operations
#[derive(Copy, Clone, Debug)]
pub enum SyncLevel {
/// No synchronization requirement
None = 0,
/// Data is written to device, but not necessarily meta data
Data = aio::RWF_DSYNC as isize,
/// Data and associated meta data is written to device
Full = aio::RWF_SYNC as isize,
}
impl AioContext {
/// Create a new AioContext that is driven by the provided event loop.
///
/// # Params
/// - executor: The executor used to spawn the background polling task
/// - nr: Number of submission slots for IO requests
pub fn new<E>(executor: &E, nr: usize) -> Result<AioContext, io::Error>
where
E: futures::future::Executor<futures::sync::oneshot::Execute<AioPollFuture>>,
{
// An eventfd that we use for I/O completion notifications from the kernel
let eventfd = eventfd::EventFd::create(0, false)?;
let fd = eventfd.evented.get_ref().fd;
let mut inner = AioContextInner::new(fd, nr)?;
let context = inner.context;
let poll_future = AioPollFuture {
context,
eventfd,
events: Vec::with_capacity(nr),
};
inner.poll_task_handle = Some(futures::sync::oneshot::spawn(poll_future, executor));
Ok(AioContext {
inner: std::sync::Arc::new(inner),
})
}
/// Initiate an asynchronous read operation on the given file descriptor for reading
/// data from the provided absolute file offset into the buffer. The buffer also determines
/// the number of bytes to be read, which should be a multiple of the underlying device block
/// size.
///
/// # Params:
/// - fd: The file descriptor of the file from which to read
/// - offset: The file offset where we want to read from
/// - buffer: A buffer to receive the read results
pub fn read<ReadWriteHandle>(
&self,
fd: RawFd,
offset: u64,
mut buffer_obj: ReadWriteHandle,
) -> AioReadResultFuture<ReadWriteHandle>
where
ReadWriteHandle: convert::AsMut<[u8]>,
{
let (ptr, len) = {
let buffer = buffer_obj.as_mut();
let len = buffer.len() as u64;
let ptr = unsafe { mem::transmute(buffer.as_ptr()) };
(ptr, len)
};
// nothing really happens here until someone calls poll
AioReadResultFuture {
base: AioBaseFuture {
context: self.inner.clone(),
iocb_info: IocbInfo {
opcode: aio::IOCB_CMD_PREAD,
fd,
offset,
len,
buf: ptr,
flags: 0,
},
state: None,
acquire_state: None,
},
buffer: Some(buffer_obj),
}
}
/// Initiate an asynchronous write operation on the given file descriptor for writing
/// data to the provided absolute file offset from the buffer. The buffer also determines
/// the number of bytes to be written, which should be a multiple of the underlying device block
/// size.
///
/// # Params:
/// - fd: The file descriptor of the file to which to write
/// - offset: The file offset where we want to write to
/// - buffer: A buffer holding the data to be written
pub fn write<ReadOnlyHandle>(
&self,
fd: RawFd,
offset: u64,
buffer: ReadOnlyHandle,
) -> AioWriteResultFuture<ReadOnlyHandle>
where
ReadOnlyHandle: convert::AsRef<[u8]>,
{
self.write_sync(fd, offset, buffer, SyncLevel::None)
}
/// Initiate an asynchronous write operation on the given file descriptor for writing
/// data to the provided absolute file offset from the buffer. The buffer also determines
/// the number of bytes to be written, which should be a multiple of the underlying device block
/// size.
///
/// # Params:
/// - fd: The file descriptor of the file to which to write
/// - offset: The file offset where we want to write to
/// - buffer: A buffer holding the data to be written
/// - sync_level: A synchronization level to apply for this write operation
pub fn write_sync<ReadOnlyHandle>(
&self,
fd: RawFd,
offset: u64,
buffer_obj: ReadOnlyHandle,
sync_level: SyncLevel
) -> AioWriteResultFuture<ReadOnlyHandle>
where
ReadOnlyHandle: convert::AsRef<[u8]>,
{
let (ptr, len) = {
let buffer = buffer_obj.as_ref();
let len = buffer.len() as u64;
let ptr = unsafe { mem::transmute(buffer.as_ptr()) };
(ptr, len)
};
// nothing really happens here until someone calls poll
AioWriteResultFuture {
base: AioBaseFuture {
context: self.inner.clone(),
iocb_info: IocbInfo {
opcode: aio::IOCB_CMD_PWRITE,
fd,
offset,
len,
buf: ptr,
flags: sync_level as u32,
},
state: None,
acquire_state: None,
},
buffer: Some(buffer_obj),
}
}
/// Initiate an asynchronous sync operation on the given file descriptor.
///
/// __Caveat:__ While this operation is defined in the ABI, this command is known to
/// fail with an invalid argument error (`EINVAL`) in many, if not all, cases. You are kind of
/// on your own.
///
/// # Params:
/// - fd: The file descriptor of the file to which to write
pub fn sync(
&self,
fd: RawFd,
) -> AioSyncResultFuture
{
// nothing really happens here until someone calls poll
AioSyncResultFuture {
base: AioBaseFuture {
context: self.inner.clone(),
iocb_info: IocbInfo {
opcode: aio::IOCB_CMD_FSYNC,
fd,
buf: 0,
len: 0,
offset: 0,
flags: 0,
},
state: None,
acquire_state: None,
},
}
}
/// Initiate an asynchronous data sync operation on the given file descriptor.
///
/// __Caveat:__ While this operation is defined in the ABI, this command is known to
/// fail with an invalid argument error (`EINVAL`) in many, if not all, cases. You are kind of
/// on your own.
///
/// # Params:
/// - fd: The file descriptor of the file to which to write
pub fn data_sync(
&self,
fd: RawFd,
) -> AioSyncResultFuture
{
// nothing really happens here until someone calls poll
AioSyncResultFuture {
base: AioBaseFuture {
context: self.inner.clone(),
iocb_info: IocbInfo {
opcode: aio::IOCB_CMD_FDSYNC,
fd,
buf: 0,
len: 0,
offset: 0,
flags: 0,
},
state: None,
acquire_state: None,
},
}
}
}
// ---------------------------------------------------------------------------
// Test code starts here
// ---------------------------------------------------------------------------
#[cfg(test)]
mod tests {
use super::*;
use std::borrow::{Borrow, BorrowMut};
use std::env;
use std::fs;
use std::io::Write;
use std::os::unix::ffi::OsStrExt;
use std::path;
use std::sync;
use rand::Rng;
use tokio::executor::current_thread;
use memmap;
use futures_cpupool;
use libc::{close, open, O_DIRECT, O_RDWR};
const FILE_SIZE: u64 = 1024 * 512;
// Create a temporary file name within the temporary directory configured in the environment.
fn temp_file_name() -> path::PathBuf {
let mut rng = rand::thread_rng();
let mut result = env::temp_dir();
let filename = format!("test-aio-{}.dat", rng.gen::<u64>());
result.push(filename);
result
}
// Create a temporary file with some content
fn create_temp_file(path: &path::Path) {
let mut file = fs::File::create(path).unwrap();
let mut data: [u8; FILE_SIZE as usize] = [0; FILE_SIZE as usize];
for index in 0..data.len() {
data[index] = index as u8;
}
let result = file.write(&data).and_then(|_| file.sync_all());
assert!(result.is_ok());
}
// Delete the temporary file
fn remove_file(path: &path::Path) {
let _ = fs::remove_file(path);
}
#[test]
fn create_and_drop() {
let pool = futures_cpupool::CpuPool::new(3);
let _context = AioContext::new(&pool, 10).unwrap();
}
struct MemoryBlock {
bytes: sync::RwLock<memmap::MmapMut>,
}
impl MemoryBlock {
fn new() -> MemoryBlock {
let map = memmap::MmapMut::map_anon(8192).unwrap();
unsafe { mlock(map.as_ref().as_ptr() as *const c_void, map.len()) };
MemoryBlock {
// for real uses, we'll have a buffer pool with locks associated with individual pages
// simplifying the logic here for test case development
bytes: sync::RwLock::new(map),
}
}
}
struct MemoryHandle {
block: sync::Arc<MemoryBlock>,
}
impl MemoryHandle {
fn new() -> MemoryHandle {
MemoryHandle {
block: sync::Arc::new(MemoryBlock::new()),
}
}
}
impl Clone for MemoryHandle {
fn clone(&self) -> MemoryHandle {
MemoryHandle {
block: self.block.clone(),
}
}
}
impl convert::AsRef<[u8]> for MemoryHandle {
fn as_ref(&self) -> &[u8] {
unsafe { mem::transmute(&(*self.block.bytes.read().unwrap())[..]) }
}
}
impl convert::AsMut<[u8]> for MemoryHandle {
fn as_mut(&mut self) -> &mut [u8] {
unsafe { mem::transmute(&mut (*self.block.bytes.write().unwrap())[..]) }
}
}
#[test]
fn read_block_mt() {
let file_name = temp_file_name();
create_temp_file(&file_name);
{
let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
open(
mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
O_DIRECT | O_RDWR,
)
});
let fd = owned_fd.fd;
let pool = futures_cpupool::CpuPool::new(5);
let buffer = MemoryHandle::new();
{
let context = AioContext::new(&pool, 10).unwrap();
let read_future = context
.read(fd, 0, buffer)
.map(move |result_buffer| {
assert!(validate_block(result_buffer.as_ref()));
})
.map_err(|err| {
panic!("{:?}", err);
});
let cpu_future = pool.spawn(read_future);
let result = cpu_future.wait();
assert!(result.is_ok());
}
}
remove_file(&file_name);
}
#[test]
fn write_block_mt() {
use io::{Read, Seek};
let file_name = temp_file_name();
create_temp_file(&file_name);
{
let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
open(
mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
O_DIRECT | O_RDWR,
)
});
let fd = owned_fd.fd;
let pool = futures_cpupool::CpuPool::new(5);
let mut buffer = MemoryHandle::new();
fill_pattern(65u8, buffer.as_mut());
{
let context = AioContext::new(&pool, 2).unwrap();
let write_future = context.write(fd, 16384, buffer).map_err(|err| {
panic!("{:?}", err);
});
let cpu_future = pool.spawn(write_future);
let result = cpu_future.wait();
assert!(result.is_ok());
}
}
let mut file = fs::File::open(&file_name).unwrap();
file.seek(io::SeekFrom::Start(16384)).unwrap();
let mut read_buffer: [u8; 8192] = [0u8; 8192];
file.read(&mut read_buffer).unwrap();
assert!(validate_pattern(65u8, &read_buffer));
}
#[test]
fn write_block_sync_mt() {
// At this point, this test merely verifies that data ends up being written to
// a file in the presence of synchronization flags. What the test does not verify
// as that the specific synchronization guarantees are being fulfilled.
use io::{Read, Seek};
let file_name = temp_file_name();
create_temp_file(&file_name);
{
let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
open(
mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
O_DIRECT | O_RDWR,
)
});
let fd = owned_fd.fd;
let pool = futures_cpupool::CpuPool::new(5);
let context = AioContext::new(&pool, 2).unwrap();
{
let mut buffer = MemoryHandle::new();
fill_pattern(65u8, buffer.as_mut());
let write_future = context.write(fd, 16384, buffer).map_err(|err| {
panic!("{:?}", err);
});
let cpu_future = pool.spawn(write_future);
let result = cpu_future.wait();
assert!(result.is_ok());
}
{
let mut buffer = MemoryHandle::new();
fill_pattern(66u8, buffer.as_mut());
let write_future = context.write(fd, 32768, buffer).map_err(|err| {
panic!("{:?}", err);
});
let cpu_future = pool.spawn(write_future);
let result = cpu_future.wait();
assert!(result.is_ok());
}
{
let mut buffer = MemoryHandle::new();
fill_pattern(67u8, buffer.as_mut());
let write_future = context.write(fd, 49152, buffer).map_err(|err| {
panic!("{:?}", err);
});
let cpu_future = pool.spawn(write_future);
let result = cpu_future.wait();
assert!(result.is_ok());
}
}
let mut file = fs::File::open(&file_name).unwrap();
let mut read_buffer: [u8; 8192] = [0u8; 8192];
file.seek(io::SeekFrom::Start(16384)).unwrap();
file.read(&mut read_buffer).unwrap();
assert!(validate_pattern(65u8, &read_buffer));
file.seek(io::SeekFrom::Start(32768)).unwrap();
file.read(&mut read_buffer).unwrap();
assert!(validate_pattern(66u8, &read_buffer));
file.seek(io::SeekFrom::Start(49152)).unwrap();
file.read(&mut read_buffer).unwrap();
assert!(validate_pattern(67u8, &read_buffer));
}
#[test]
fn read_invalid_fd() {
let fd = 2431;
let pool = futures_cpupool::CpuPool::new(5);
let buffer = MemoryHandle::new();
{
let context = AioContext::new(&pool, 10).unwrap();
let read_future = context
.read(fd, 0, buffer)
.map(move |_| {
assert!(false);
})
.map_err(|err| {
assert!(err.error.kind() == io::ErrorKind::Other);
err
});
let cpu_future = pool.spawn(read_future);
let result = cpu_future.wait();
assert!(result.is_err());
}
}
/*
For some reason, this test does not pass on Travis. Need to research why the out-of-range
file offset does not trip an invalid argument error.
#[test]
fn invalid_offset() {
let file_name = temp_file_name();
create_temp_file(&file_name);
{
let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
open(
mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
O_DIRECT | O_RDWR,
)
});
let fd = owned_fd.fd;
let pool = futures_cpupool::CpuPool::new(5);
let buffer = MemoryHandle::new();
let context = AioContext::new(&pool, 10).unwrap();
let read_future = context
.read(fd, 1000000, buffer)
.map(move |_| {
assert!(false);
})
.map_err(|err| {
assert!(err.error.kind() == io::ErrorKind::Other);
err
});
let cpu_future = pool.spawn(read_future);
let result = cpu_future.wait();
assert!(result.is_err());
}
remove_file(&file_name);
}
*/
#[test]
fn read_many_blocks_mt() {
let file_name = temp_file_name();
create_temp_file(&file_name);
{
let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
open(
mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
O_DIRECT | O_RDWR,
)
});
let fd = owned_fd.fd;
let pool = futures_cpupool::CpuPool::new(5);
{
let num_slots = 7;
let context = AioContext::new(&pool, num_slots).unwrap();
// 50 waves of requests just going above the lmit
// Waves start here
for _wave in 0..50 {
let mut futures = Vec::new();
// Each wave makes 100 I/O requests
for index in 0..100 {
let buffer = MemoryHandle::new();
let read_future = context
.read(fd, (index * 8192) % FILE_SIZE, buffer)
.map(move |result_buffer| {
assert!(validate_block(result_buffer.as_ref()));
})
.map_err(|err| {
panic!("{:?}", err);
});
futures.push(pool.spawn(read_future));
}
// wait for all 100 requests to complete
let result = futures::future::join_all(futures).wait();
assert!(result.is_ok());
// all slots have been returned
assert!(context.inner.have_capacity.current_capacity() == num_slots);
}
}
}
remove_file(&file_name);
}
// A test with a mixed read/write workload
#[test]
fn mixed_read_write() {
let file_name = temp_file_name();
create_temp_file(&file_name);
let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
open(
mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
O_DIRECT | O_RDWR,
)
});
let fd = owned_fd.fd;
let mut futures = Vec::new();
let pool = futures_cpupool::CpuPool::new(5);
let context = AioContext::new(&pool, 7).unwrap();
// First access sequence
let buffer1 = MemoryHandle::new();
let sequence1 = {
let context1 = context.clone();
let context2 = context.clone();
let context3 = context.clone();
let context4 = context.clone();
let context5 = context.clone();
let context6 = context.clone();
context1
.read(fd, 8192, buffer1)
.map(|mut buffer| -> MemoryHandle {
assert!(validate_block(buffer.as_ref()));
fill_pattern(0u8, buffer.as_mut());
buffer
})
.and_then(move |buffer| context2.write(fd, 8192, buffer))
.and_then(move |buffer| context3.read(fd, 0, buffer))
.map(|mut buffer| -> MemoryHandle {
assert!(validate_block(buffer.as_ref()));
fill_pattern(1u8, buffer.as_mut());
buffer
})
.and_then(move |buffer| context4.write(fd, 0, buffer))
.and_then(move |buffer| context5.read(fd, 8192, buffer))
.map(|buffer| -> MemoryHandle {
assert!(validate_pattern(0u8, buffer.as_ref()));
buffer
})
.and_then(move |buffer| context6.read(fd, 0, buffer))
.map(|buffer| -> MemoryHandle {
assert!(validate_pattern(1u8, buffer.as_ref()));
buffer
})
.map_err(|err| {
panic!("{:?}", err);
})
};
// Second access sequence
let buffer2 = MemoryHandle::new();
let sequence2 = {
let context1 = context.clone();
let context2 = context.clone();
let context3 = context.clone();
let context4 = context.clone();
let context5 = context.clone();
let context6 = context.clone();
context1
.read(fd, 16384, buffer2)
.map(|mut buffer| -> MemoryHandle {
assert!(validate_block(buffer.as_ref()));
fill_pattern(2u8, buffer.as_mut());
buffer
})
.and_then(move |buffer| context2.write(fd, 16384, buffer))
.and_then(move |buffer| context3.read(fd, 24576, buffer))
.map(|mut buffer| -> MemoryHandle {
assert!(validate_block(buffer.as_ref()));
fill_pattern(3u8, buffer.as_mut());
buffer
})
.and_then(move |buffer| context4.write(fd, 24576, buffer))
.and_then(move |buffer| context5.read(fd, 16384, buffer))
.map(|buffer| -> MemoryHandle {
assert!(validate_pattern(2u8, buffer.as_ref()));
buffer
})
.and_then(move |buffer| context6.read(fd, 24576, buffer))
.map(|buffer| -> MemoryHandle {
assert!(validate_pattern(3u8, buffer.as_ref()));
buffer
})
.map_err(|err| {
panic!("{:?}", err);
})
};
// Third access sequence
let buffer3 = MemoryHandle::new();
let sequence3 = {
let context1 = context.clone();
let context2 = context.clone();
let context3 = context.clone();
let context4 = context.clone();
let context5 = context.clone();
let context6 = context.clone();
context1
.read(fd, 40960, buffer3)
.map(|mut buffer| -> MemoryHandle {
assert!(validate_block(buffer.as_ref()));
fill_pattern(5u8, buffer.as_mut());
buffer
})
.and_then(move |buffer| context2.write(fd, 40960, buffer))
.and_then(move |buffer| context3.read(fd, 32768, buffer))
.map(|mut buffer| -> MemoryHandle {
assert!(validate_block(buffer.as_ref()));
fill_pattern(6u8, buffer.as_mut());
buffer
})
.and_then(move |buffer| context4.write(fd, 32768, buffer))
.and_then(move |buffer| context5.read(fd, 40960, buffer))
.map(|buffer| -> MemoryHandle {
assert!(validate_pattern(5u8, buffer.as_ref()));
buffer
})
.and_then(move |buffer| context6.read(fd, 32768, buffer))
.map(|buffer| -> MemoryHandle {
assert!(validate_pattern(6u8, buffer.as_ref()));
buffer
})
.map_err(|err| {
panic!("{:?}", err);
})
};
// Launch the three futures
futures.push(pool.spawn(sequence1));
futures.push(pool.spawn(sequence2));
futures.push(pool.spawn(sequence3));
// Wair for completion
let result = futures::future::join_all(futures).wait();
assert!(result.is_ok());
}
// Fille the buffer with a pattern that has a dependency on the provided key.
fn fill_pattern(key: u8, buffer: &mut [u8]) {
// The pattern we generate is an alternation of the key value and an index value
// For this we ensure that the buffer has an even number of elements
assert!(buffer.len() % 2 == 0);
for index in 0..buffer.len() / 2 {
buffer[index * 2] = key;
buffer[index * 2 + 1] = index as u8;
}
}
// Validate that the buffer is filled with a pattern as generated by the provided key.
fn validate_pattern(key: u8, buffer: &[u8]) -> bool {
// The pattern we generate is an alternation of the key value and an index value
// For this we ensure that the buffer has an even number of elements
assert!(buffer.len() % 2 == 0);
for index in 0..buffer.len() / 2 {
if (buffer[index * 2] != key) || (buffer[index * 2 + 1] != (index as u8)) {
return false;
}
}
return true;
}
fn validate_block(data: &[u8]) -> bool {
for index in 0..data.len() {
if data[index] != index as u8 {
return false;
}
}
true
}
struct OwnedFd {
fd: RawFd,
}
impl OwnedFd {
fn new_from_raw_fd(fd: RawFd) -> OwnedFd {
OwnedFd { fd }
}
}
impl Drop for OwnedFd {
fn drop(&mut self) {
let result = unsafe { close(self.fd) };
assert!(result == 0);
}
}
}