1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
// ===============================================================================================
// Copyright (c) 2018 Hans-Martin Will
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// ===============================================================================================

//! Tokio Bindings for Linux Kernel AIO
//!
//! This package provides an integration of Linux kernel-level asynchronous I/O to the
//! [Tokio platform](https://tokio.rs/).
//!
//! Linux kernel-level asynchronous I/O is different from the [Posix AIO library](http://man7.org/linux/man-pages/man7/aio.7.html).
//! Posix AIO is implemented using a pool of userland threads, which invoke regular, blocking system
//! calls to perform file I/O. [Linux kernel-level AIO](http://lse.sourceforge.net/io/aio.html), on the
//! other hand, provides kernel-level asynchronous scheduling of I/O operations to the underlying block device.
//!
//! The core abstraction exposed by this library is the `AioContext`, which essentially wraps
//! a kernel-level I/O submission queue with limited capacity. The capacity of the underlying queue
//! is a constructor argument when creating an instance of `AioContext`. Once created, the context
//! can be used to issue read and write requests. Each such invocations will create a suitable instance
//! of `futures::Future`, which can be executed within the context of Tokio.
//!
//! There's a few gotchas to be aware of when using this library:
//!
//! 1. Linux AIO requires the underlying file to be opened in direct mode (`O_DIRECT`), bypassing
//! any other buffering at the OS level. If you attempt to use this library on files opened regularly,
//! likely it won't work.
//!
//! 2. Because Linux AIO operates on files in direct mode, by corrollary the memory buffers associated
//! with read/write requests need to be suitable for direct DMA transfers. This means that those buffers
//! should be aligned to hardware page boundaries, and the memory needs to be mapped to pysical RAM.
//! The best way to accomplish this is to have a mmapped region that is locked in physical memory.
//!
//! 3. Due to the asynchronous nature of this library, memory buffers are represented using generic
//! handle types. For the purpose of the inner workings of this library, the important aspect is that
//! those handle types can be dereferenced into a `&[u8]` or, respectively, a `&mut [u8]` type. Because
//! we hand off those buffers to the kernel (and ultimately hardware DMA) it is mandatory that those
//! bytes slices have a fixed address in main memory during I/O processing.
//!
//! 4. The general idea is that those generic handle types for memory access can implement smart
//! pointer semantics. For example, a conceivable implementation of a memory handle type is a smart
//! pointer that acquires a write-lock on a page while a data transfer is in progress, and releases
//! such a lock once the operation has completed.

extern crate aio_bindings;
extern crate futures;
extern crate futures_cpupool;
extern crate libc;
extern crate memmap;
extern crate mio;
extern crate rand;
extern crate tokio;

use std::convert;
use std::error;
use std::fmt;
use std::io;
use std::mem;
use std::ops;
use std::ptr;

use std::os::unix::io::RawFd;

use libc::{c_long, c_void, mlock};

use futures::Future;
use ops::Deref;

// local modules
mod aio;
mod eventfd;
mod sync;

// -----------------------------------------------------------------------------------------------
// Bindings for Linux AIO start here
// -----------------------------------------------------------------------------------------------

// field values that we need to transfer into a kernel IOCB
struct IocbInfo {
    // the I/O opcode
    opcode: u32,

    // file fd identifying the file to operate on
    fd: RawFd,

    // an absolute file offset, if applicable for the command
    offset: u64,

    // the base address of the transfer buffer, if applicable
    buf: u64,

    // the number of bytes to be transferred, if applicable
    len: u64,

    // flags to provide additional parameters 
    flags: u32,
}

// State information that is associated with an I/O request that is currently in flight.
#[derive(Debug)]
struct RequestState {
    // Linux kernal I/O control block which can be submitted to io_submit
    request: aio::iocb,

    // Concurrency primitive to notify completion to the associated future
    completed_receiver: futures::sync::oneshot::Receiver<c_long>,

    // We have both sides of a oneshot channel here
    completed_sender: Option<futures::sync::oneshot::Sender<c_long>>,
}

// Common data structures for futures returned by `AioContext`.
struct AioBaseFuture {
    // reference to the `AioContext` that controls the submission queue for asynchronous I/O
    context: std::sync::Arc<AioContextInner>,

    // request information captured for the kernel request
    iocb_info: IocbInfo,

    // the associated request state
    state: Option<Box<RequestState>>,

    // acquire future
    acquire_state: Option<sync::SemaphoreHandle>,
}

impl AioBaseFuture {
    // Attempt to submit the I/O request; this may need to wait until a submission slot is
    // available.
    fn submit_request(&mut self) -> Result<futures::Async<()>, io::Error> {
        if self.state.is_none() {
            // See if we can secure a submission slot
            if self.acquire_state.is_none() {
                self.acquire_state = Some(self.context.have_capacity.acquire());
            }

            match self.acquire_state.as_mut().unwrap().poll() {
                Err(err) => return Err(err),
                Ok(futures::Async::NotReady) => return Ok(futures::Async::NotReady),
                Ok(futures::Async::Ready(_)) => {
                    // retrieve a state container from the set of available ones and move it into the future
                    let mut guard = self.context.capacity.write();
                    match guard {
                        Ok(ref mut guard) => {
                            self.state = guard.state.pop();
                        }
                        Err(_) => panic!("TODO: Figure out how to handle this kind of error"),
                    }
                }
            }

            assert!(self.state.is_some());
            let state = self.state.as_mut().unwrap();
            let state_addr = state.deref().deref() as *const RequestState;

            // Fill in the iocb data structure to be submitted to the kernel
            state.request.aio_data = unsafe { mem::transmute(state_addr) };
            state.request.aio_resfd = self.context.completed_fd as u32;
            state.request.aio_flags = aio::IOCB_FLAG_RESFD | self.iocb_info.flags;
            state.request.aio_fildes = self.iocb_info.fd as u32;
            state.request.aio_offset = self.iocb_info.offset as i64;
            state.request.aio_buf = self.iocb_info.buf;
            state.request.aio_nbytes = self.iocb_info.len;
            state.request.aio_lio_opcode = self.iocb_info.opcode as u16;

            // attach synchronization primitives that are used to indicate completion of this request
            let (sender, receiver) = futures::sync::oneshot::channel();
            state.completed_receiver = receiver;
            state.completed_sender = Some(sender);

            // submit the request
            let mut request_ptr_array: [*mut aio::iocb; 1] =
                [&mut state.request as *mut aio::iocb; 1];

            let result = unsafe {
                aio::io_submit(
                    self.context.context,
                    1,
                    &mut request_ptr_array[0] as *mut *mut aio::iocb,
                )
            };

            // if we have submission error, capture it as future result
            if result != 1 {
                return Err(io::Error::last_os_error());
            }
        }

        Ok(futures::Async::Ready(()))
    }

    // Attempt to retrieve the result of a previously submitted I/O request; this may need to
    // wait until the I/O operation has been completed
    fn retrieve_result(&mut self) -> Result<futures::Async<()>, io::Error> {
        // Check if we have received a notification indicating completion of the I/O request
        let result_code = match self.state.as_mut().unwrap().completed_receiver.poll() {
            Err(err) => return Err(io::Error::new(io::ErrorKind::Other, err)),
            Ok(futures::Async::NotReady) => return Ok(futures::Async::NotReady),
            Ok(futures::Async::Ready(n)) => n,
        };

        // Release the kernel queue slot and the state variable that we just processed
        match self.context.capacity.write() {
            Ok(ref mut guard) => {
                guard.state.push(self.state.take().unwrap());
            }
            Err(_) => panic!("TODO: Figure out how to handle this kind of error"),
        }

        // notify others that we release a state slot
        self.context.have_capacity.release();

        if result_code < 0 {
            Err(io::Error::from_raw_os_error(result_code as i32))
        } else {
            Ok(futures::Async::Ready(()))
        }
    }
}

// Common future base type for all asynchronous operations supperted by this API
impl futures::Future for AioBaseFuture {
    type Item = ();
    type Error = io::Error;

    fn poll(&mut self) -> Result<futures::Async<()>, io::Error> {
        let result = self.submit_request();

        match result {
            Ok(futures::Async::Ready(())) => self.retrieve_result(),
            Ok(futures::Async::NotReady) => Ok(futures::Async::NotReady),
            Err(err) => Err(err),
        }
    }
}

/// An error type for I/O operations that allows us to return the memory handle in failure cases.
pub struct AioError<Handle> {
    // The buffer handle that we want to return to the caller
    pub buffer: Handle,

    // The error value
    pub error: io::Error,
}

impl<Handle> fmt::Debug for AioError<Handle> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        self.error.fmt(f)
    }
}

impl<Handle> fmt::Display for AioError<Handle> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        self.error.fmt(f)
    }
}

impl<Handle> error::Error for AioError<Handle> {
    fn description(&self) -> &str {
        self.error.description()
    }

    fn cause(&self) -> Option<&error::Error> {
        self.error.cause()
    }
}

/// Future returned as result of submitting a read request via `AioContext::read`.
pub struct AioReadResultFuture<ReadWriteHandle>
where
    ReadWriteHandle: convert::AsMut<[u8]>,
{
    // common AIO future state
    base: AioBaseFuture,

    // memory handle where data read from the underlying block device is being written to.
    // Holding on to this value is important in the case where it implements Drop.
    buffer: Option<ReadWriteHandle>,
}

impl<ReadWriteHandle> futures::Future for AioReadResultFuture<ReadWriteHandle>
where
    ReadWriteHandle: convert::AsMut<[u8]>,
{
    type Item = ReadWriteHandle;
    type Error = AioError<ReadWriteHandle>;

    fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
        self.base
            .poll()
            .map(|val| val.map(|_| self.buffer.take().unwrap()))
            .map_err(|err| AioError {
                buffer: self.buffer.take().unwrap(),
                error: err,
            })
    }
}

/// Future returned as result of submitting a write request via `AioContext::write`.
pub struct AioWriteResultFuture<ReadOnlyHandle>
where
    ReadOnlyHandle: convert::AsRef<[u8]>,
{
    // common AIO future state
    base: AioBaseFuture,

    // memory handle where data written to the underlying block device is being read from.
    // Holding on to this value is important in the case where it implements Drop.
    buffer: Option<ReadOnlyHandle>,
}

impl<ReadOnlyHandle> futures::Future for AioWriteResultFuture<ReadOnlyHandle>
where
    ReadOnlyHandle: convert::AsRef<[u8]>,
{
    type Item = ReadOnlyHandle;
    type Error = AioError<ReadOnlyHandle>;

    fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
        self.base
            .poll()
            .map(|val| val.map(|_| self.buffer.take().unwrap()))
            .map_err(|err| AioError {
                buffer: self.buffer.take().unwrap(),
                error: err,
            })
    }
}

/// Future returned as result of submitting a write request via `AioContext::sync` or
/// `AioContext::data_sync`.
pub struct AioSyncResultFuture
{
    // common AIO future state
    base: AioBaseFuture,
}

impl futures::Future for AioSyncResultFuture
{
    type Item = ();
    type Error = io::Error;

    fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
        self.base.poll()
    }
}

// A future spawned as background task to retrieve I/O completion events from the kernel
// and distributing the results to the current futures in flight.
pub struct AioPollFuture {
    // the context handle for retrieving AIO completions from the kernel
    context: aio::aio_context_t,

    // the eventfd on which the kernel will notify I/O completions
    eventfd: eventfd::EventFd,

    // a buffer to retrieve completion status from the kernel
    events: Vec<aio::io_event>,
}

impl futures::Future for AioPollFuture {
    type Item = ();
    type Error = io::Error;

    // This poll function will never return completion
    fn poll(&mut self) -> Result<futures::Async<Self::Item>, Self::Error> {
        loop {
            // check the eventfd for completed I/O operations
            let available = match self.eventfd.read() {
                Err(err) => return Err(err),
                Ok(futures::Async::NotReady) => return Ok(futures::Async::NotReady),
                Ok(futures::Async::Ready(value)) => value as usize,
            };

            assert!(available > 0);
            self.events.clear();

            unsafe {
                let result = aio::io_getevents(
                    self.context,
                    available as c_long,
                    available as c_long,
                    self.events.as_mut_ptr(),
                    ptr::null_mut::<aio::timespec>(),
                );

                // adjust the vector size to the actual number of items returned
                if result < 0 {
                    return Err(io::Error::last_os_error());
                }

                assert!(result as usize == available);
                self.events.set_len(available);
            };

            // dispatch the retrieved events to the associated futures
            for ref event in &self.events {
                let request_state: &mut RequestState = unsafe { mem::transmute(event.data) };
                request_state
                    .completed_sender
                    .take()
                    .unwrap()
                    .send(event.res)
                    .unwrap();
            }
        }
    }
}

// Shared state within AioContext that is backing I/O requests as represented by the individual futures.
#[derive(Debug)]
struct Capacity {
    // pre-allocated eventfds and iocbs that are associated with scheduled I/O requests
    state: Vec<Box<RequestState>>,
}

impl Capacity {
    fn new(nr: usize) -> Result<Capacity, io::Error> {
        let mut state = Vec::with_capacity(nr);

        // using a for loop to properly handle the error case
        // range map collect would only allow for using unwrap(), thereby turning an error into a panic
        for _ in 0..nr {
            let (_, receiver) = futures::sync::oneshot::channel();

            state.push(Box::new(RequestState {
                request: unsafe { mem::zeroed() },
                completed_receiver: receiver,
                completed_sender: None,
            }));
        }

        Ok(Capacity { state })
    }
}

// The inner state, which is shared between the AioContext object returned to clients and
// used internally by futures in flight.
#[derive(Debug)]
struct AioContextInner {
    // the context handle for submitting AIO requests to the kernel
    context: aio::aio_context_t,

    // the fd embedded in the completed eventfd, which can be passed to kernel functions;
    // the handle is managed by the Eventfd object that is owned by the AioPollFuture
    // that we spawn when creating an AioContext.
    completed_fd: RawFd,

    // do we have capacity?
    have_capacity: sync::Semaphore,

    // pre-allocated eventfds and a capacity semaphore
    capacity: std::sync::RwLock<Capacity>,

    // handle for the spawned background task; dropping it will cancel the task
    // we are using an Option value with delayed initialization to keep the generic
    // executor type parameter out of AioContextInner
    poll_task_handle: Option<futures::sync::oneshot::SpawnHandle<(), io::Error>>,
}

impl AioContextInner {
    fn new(fd: RawFd, nr: usize) -> Result<AioContextInner, io::Error> {
        let mut context: aio::aio_context_t = 0;

        unsafe {
            if aio::io_setup(nr as c_long, &mut context) != 0 {
                return Err(io::Error::last_os_error());
            }
        };

        Ok(AioContextInner {
            context,
            capacity: std::sync::RwLock::new(Capacity::new(nr)?),
            have_capacity: sync::Semaphore::new(nr),
            completed_fd: fd,
            poll_task_handle: None,
        })
    }
}

impl Drop for AioContextInner {
    fn drop(&mut self) {
        let result = unsafe { aio::io_destroy(self.context) };
        assert!(result == 0);
    }
}

/// AioContext provides a submission queue for asycnronous I/O operations to
/// block devices within the Linux kernel.
#[derive(Clone, Debug)]
pub struct AioContext {
    inner: std::sync::Arc<AioContextInner>,
}

/// Synchronization levels associated with I/O operations
#[derive(Copy, Clone, Debug)]
pub enum SyncLevel {
    /// No synchronization requirement
    None = 0,

    /// Data is written to device, but not necessarily meta data
    Data = aio::RWF_DSYNC as isize,

    /// Data and associated meta data is written to device
    Full = aio::RWF_SYNC as isize,
}

impl AioContext {
    /// Create a new AioContext that is driven by the provided event loop.
    ///
    /// # Params
    /// - executor: The executor used to spawn the background polling task
    /// - nr: Number of submission slots for IO requests
    pub fn new<E>(executor: &E, nr: usize) -> Result<AioContext, io::Error>
    where
        E: futures::future::Executor<futures::sync::oneshot::Execute<AioPollFuture>>,
    {
        // An eventfd that we use for I/O completion notifications from the kernel
        let eventfd = eventfd::EventFd::create(0, false)?;
        let fd = eventfd.evented.get_ref().fd;

        let mut inner = AioContextInner::new(fd, nr)?;
        let context = inner.context;

        let poll_future = AioPollFuture {
            context,
            eventfd,
            events: Vec::with_capacity(nr),
        };

        inner.poll_task_handle = Some(futures::sync::oneshot::spawn(poll_future, executor));

        Ok(AioContext {
            inner: std::sync::Arc::new(inner),
        })
    }

    /// Initiate an asynchronous read operation on the given file descriptor for reading
    /// data from the provided absolute file offset into the buffer. The buffer also determines
    /// the number of bytes to be read, which should be a multiple of the underlying device block
    /// size.
    ///
    /// # Params:
    /// - fd: The file descriptor of the file from which to read
    /// - offset: The file offset where we want to read from
    /// - buffer: A buffer to receive the read results
    pub fn read<ReadWriteHandle>(
        &self,
        fd: RawFd,
        offset: u64,
        mut buffer_obj: ReadWriteHandle,
    ) -> AioReadResultFuture<ReadWriteHandle>
    where
        ReadWriteHandle: convert::AsMut<[u8]>,
    {
        let (ptr, len) = {
            let buffer = buffer_obj.as_mut();
            let len = buffer.len() as u64;
            let ptr = unsafe { mem::transmute(buffer.as_ptr()) };
            (ptr, len)
        };

        // nothing really happens here until someone calls poll
        AioReadResultFuture {
            base: AioBaseFuture {
                context: self.inner.clone(),
                iocb_info: IocbInfo {
                    opcode: aio::IOCB_CMD_PREAD,
                    fd,
                    offset,
                    len,
                    buf: ptr,
                    flags: 0,
                },
                state: None,
                acquire_state: None,
            },
            buffer: Some(buffer_obj),
        }
    }

    /// Initiate an asynchronous write operation on the given file descriptor for writing
    /// data to the provided absolute file offset from the buffer. The buffer also determines
    /// the number of bytes to be written, which should be a multiple of the underlying device block
    /// size.
    ///
    /// # Params:
    /// - fd: The file descriptor of the file to which to write
    /// - offset: The file offset where we want to write to
    /// - buffer: A buffer holding the data to be written
    pub fn write<ReadOnlyHandle>(
        &self,
        fd: RawFd,
        offset: u64,
        buffer: ReadOnlyHandle,
    ) -> AioWriteResultFuture<ReadOnlyHandle>
    where
        ReadOnlyHandle: convert::AsRef<[u8]>,
    {
        self.write_sync(fd, offset, buffer, SyncLevel::None)
    }

    /// Initiate an asynchronous write operation on the given file descriptor for writing
    /// data to the provided absolute file offset from the buffer. The buffer also determines
    /// the number of bytes to be written, which should be a multiple of the underlying device block
    /// size.
    ///
    /// # Params:
    /// - fd: The file descriptor of the file to which to write
    /// - offset: The file offset where we want to write to
    /// - buffer: A buffer holding the data to be written
    /// - sync_level: A synchronization level to apply for this write operation
    pub fn write_sync<ReadOnlyHandle>(
        &self,
        fd: RawFd,
        offset: u64,
        buffer_obj: ReadOnlyHandle,
        sync_level: SyncLevel
    ) -> AioWriteResultFuture<ReadOnlyHandle>
    where
        ReadOnlyHandle: convert::AsRef<[u8]>,
    {
        let (ptr, len) = {
            let buffer = buffer_obj.as_ref();
            let len = buffer.len() as u64;
            let ptr = unsafe { mem::transmute(buffer.as_ptr()) };
            (ptr, len)
        };

        // nothing really happens here until someone calls poll
        AioWriteResultFuture {
            base: AioBaseFuture {
                context: self.inner.clone(),
                iocb_info: IocbInfo {
                    opcode: aio::IOCB_CMD_PWRITE,
                    fd,
                    offset,
                    len,
                    buf: ptr,
                    flags: sync_level as u32,
                },
                state: None,
                acquire_state: None,
            },
            buffer: Some(buffer_obj),
        }
    }

    /// Initiate an asynchronous sync operation on the given file descriptor.
    /// 
    /// __Caveat:__ While this operation is defined in the ABI, this command is known to
    /// fail with an invalid argument error (`EINVAL`) in many, if not all, cases. You are kind of
    /// on your own.
    ///
    /// # Params:
    /// - fd: The file descriptor of the file to which to write
    pub fn sync(
        &self,
        fd: RawFd,
    ) -> AioSyncResultFuture
    {
        // nothing really happens here until someone calls poll
        AioSyncResultFuture {
            base: AioBaseFuture {
                context: self.inner.clone(),
                iocb_info: IocbInfo {
                    opcode: aio::IOCB_CMD_FSYNC,
                    fd,
                    buf: 0,
                    len: 0,
                    offset: 0,
                    flags: 0,
                },
                state: None,
                acquire_state: None,
            },
        }
    }


    /// Initiate an asynchronous data sync operation on the given file descriptor.
    ///
    /// __Caveat:__ While this operation is defined in the ABI, this command is known to
    /// fail with an invalid argument error (`EINVAL`) in many, if not all, cases. You are kind of
    /// on your own.
    ///
    /// # Params:
    /// - fd: The file descriptor of the file to which to write
    pub fn data_sync(
        &self,
        fd: RawFd,
    ) -> AioSyncResultFuture
    {
        // nothing really happens here until someone calls poll
        AioSyncResultFuture {
            base: AioBaseFuture {
                context: self.inner.clone(),
                iocb_info: IocbInfo {
                    opcode: aio::IOCB_CMD_FDSYNC,
                    fd,
                    buf: 0,
                    len: 0,
                    offset: 0,
                    flags: 0,
                },
                state: None,
                acquire_state: None,
            },
        }
    }
}

// ---------------------------------------------------------------------------
// Test code starts here
// ---------------------------------------------------------------------------

#[cfg(test)]
mod tests {
    use super::*;

    use std::borrow::{Borrow, BorrowMut};
    use std::env;
    use std::fs;
    use std::io::Write;
    use std::os::unix::ffi::OsStrExt;
    use std::path;
    use std::sync;

    use rand::Rng;

    use tokio::executor::current_thread;

    use memmap;
    use futures_cpupool;

    use libc::{close, open, O_DIRECT, O_RDWR};

    const FILE_SIZE: u64 = 1024 * 512;

    // Create a temporary file name within the temporary directory configured in the environment.
    fn temp_file_name() -> path::PathBuf {
        let mut rng = rand::thread_rng();
        let mut result = env::temp_dir();
        let filename = format!("test-aio-{}.dat", rng.gen::<u64>());
        result.push(filename);
        result
    }

    // Create a temporary file with some content
    fn create_temp_file(path: &path::Path) {
        let mut file = fs::File::create(path).unwrap();
        let mut data: [u8; FILE_SIZE as usize] = [0; FILE_SIZE as usize];

        for index in 0..data.len() {
            data[index] = index as u8;
        }

        let result = file.write(&data).and_then(|_| file.sync_all());
        assert!(result.is_ok());
    }

    // Delete the temporary file
    fn remove_file(path: &path::Path) {
        let _ = fs::remove_file(path);
    }

    #[test]
    fn create_and_drop() {
        let pool = futures_cpupool::CpuPool::new(3);
        let _context = AioContext::new(&pool, 10).unwrap();
    }

    struct MemoryBlock {
        bytes: sync::RwLock<memmap::MmapMut>,
    }

    impl MemoryBlock {
        fn new() -> MemoryBlock {
            let map = memmap::MmapMut::map_anon(8192).unwrap();
            unsafe { mlock(map.as_ref().as_ptr() as *const c_void, map.len()) };

            MemoryBlock {
                // for real uses, we'll have a buffer pool with locks associated with individual pages
                // simplifying the logic here for test case development
                bytes: sync::RwLock::new(map),
            }
        }
    }

    struct MemoryHandle {
        block: sync::Arc<MemoryBlock>,
    }

    impl MemoryHandle {
        fn new() -> MemoryHandle {
            MemoryHandle {
                block: sync::Arc::new(MemoryBlock::new()),
            }
        }
    }

    impl Clone for MemoryHandle {
        fn clone(&self) -> MemoryHandle {
            MemoryHandle {
                block: self.block.clone(),
            }
        }
    }

    impl convert::AsRef<[u8]> for MemoryHandle {
        fn as_ref(&self) -> &[u8] {
            unsafe { mem::transmute(&(*self.block.bytes.read().unwrap())[..]) }
        }
    }

    impl convert::AsMut<[u8]> for MemoryHandle {
        fn as_mut(&mut self) -> &mut [u8] {
            unsafe { mem::transmute(&mut (*self.block.bytes.write().unwrap())[..]) }
        }
    }

    #[test]
    fn read_block_mt() {
        let file_name = temp_file_name();
        create_temp_file(&file_name);

        {
            let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
                open(
                    mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
                    O_DIRECT | O_RDWR,
                )
            });
            let fd = owned_fd.fd;

            let pool = futures_cpupool::CpuPool::new(5);
            let buffer = MemoryHandle::new();

            {
                let context = AioContext::new(&pool, 10).unwrap();
                let read_future = context
                    .read(fd, 0, buffer)
                    .map(move |result_buffer| {
                        assert!(validate_block(result_buffer.as_ref()));
                    })
                    .map_err(|err| {
                        panic!("{:?}", err);
                    });

                let cpu_future = pool.spawn(read_future);
                let result = cpu_future.wait();

                assert!(result.is_ok());
            }
        }

        remove_file(&file_name);
    }

    #[test]
    fn write_block_mt() {
        use io::{Read, Seek};

        let file_name = temp_file_name();
        create_temp_file(&file_name);

        {
            let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
                open(
                    mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
                    O_DIRECT | O_RDWR,
                )
            });
            let fd = owned_fd.fd;

            let pool = futures_cpupool::CpuPool::new(5);
            let mut buffer = MemoryHandle::new();
            fill_pattern(65u8, buffer.as_mut());

            {
                let context = AioContext::new(&pool, 2).unwrap();
                let write_future = context.write(fd, 16384, buffer).map_err(|err| {
                    panic!("{:?}", err);
                });

                let cpu_future = pool.spawn(write_future);
                let result = cpu_future.wait();

                assert!(result.is_ok());
            }
        }

        let mut file = fs::File::open(&file_name).unwrap();
        file.seek(io::SeekFrom::Start(16384)).unwrap();

        let mut read_buffer: [u8; 8192] = [0u8; 8192];
        file.read(&mut read_buffer).unwrap();

        assert!(validate_pattern(65u8, &read_buffer));
    }

    #[test]
    fn write_block_sync_mt() {
        // At this point, this test merely verifies that data ends up being written to
        // a file in the presence of synchronization flags. What the test does not verify
        // as that the specific synchronization guarantees are being fulfilled.
        use io::{Read, Seek};

        let file_name = temp_file_name();
        create_temp_file(&file_name);

        {
            let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
                open(
                    mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
                    O_DIRECT | O_RDWR,
                )
            });
            let fd = owned_fd.fd;

            let pool = futures_cpupool::CpuPool::new(5);
            let context = AioContext::new(&pool, 2).unwrap();

            {
                let mut buffer = MemoryHandle::new();
                fill_pattern(65u8, buffer.as_mut());
                let write_future = context.write(fd, 16384, buffer).map_err(|err| {
                    panic!("{:?}", err);
                });

                let cpu_future = pool.spawn(write_future);
                let result = cpu_future.wait();

                assert!(result.is_ok());
            }

            {
                let mut buffer = MemoryHandle::new();
                fill_pattern(66u8, buffer.as_mut());
                let write_future = context.write(fd, 32768, buffer).map_err(|err| {
                    panic!("{:?}", err);
                });

                let cpu_future = pool.spawn(write_future);
                let result = cpu_future.wait();

                assert!(result.is_ok());
            }

            {
                let mut buffer = MemoryHandle::new();
                fill_pattern(67u8, buffer.as_mut());
                let write_future = context.write(fd, 49152, buffer).map_err(|err| {
                    panic!("{:?}", err);
                });

                let cpu_future = pool.spawn(write_future);
                let result = cpu_future.wait();

                assert!(result.is_ok());
            }
        }

        let mut file = fs::File::open(&file_name).unwrap();
        let mut read_buffer: [u8; 8192] = [0u8; 8192];

        file.seek(io::SeekFrom::Start(16384)).unwrap();
        file.read(&mut read_buffer).unwrap();
        assert!(validate_pattern(65u8, &read_buffer));

        file.seek(io::SeekFrom::Start(32768)).unwrap();
        file.read(&mut read_buffer).unwrap();
        assert!(validate_pattern(66u8, &read_buffer));

        file.seek(io::SeekFrom::Start(49152)).unwrap();
        file.read(&mut read_buffer).unwrap();
        assert!(validate_pattern(67u8, &read_buffer));
    }

    #[test]
    fn read_invalid_fd() {
        let fd = 2431;

        let pool = futures_cpupool::CpuPool::new(5);
        let buffer = MemoryHandle::new();

        {
            let context = AioContext::new(&pool, 10).unwrap();
            let read_future = context
                .read(fd, 0, buffer)
                .map(move |_| {
                    assert!(false);
                })
                .map_err(|err| {
                    assert!(err.error.kind() == io::ErrorKind::Other);
                    err
                });

            let cpu_future = pool.spawn(read_future);
            let result = cpu_future.wait();

            assert!(result.is_err());
        }
    }

    /*
    For some reason, this test does not pass on Travis. Need to research why the out-of-range
    file offset does not trip an invalid argument error.

    #[test]
    fn invalid_offset() {
        let file_name = temp_file_name();
        create_temp_file(&file_name);

        {
            let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
                open(
                    mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
                    O_DIRECT | O_RDWR,
                )
            });
            let fd = owned_fd.fd;

            let pool = futures_cpupool::CpuPool::new(5);
            let buffer = MemoryHandle::new();

            let context = AioContext::new(&pool, 10).unwrap();
            let read_future = context
                .read(fd, 1000000, buffer)
                .map(move |_| {
                    assert!(false);
                })
                .map_err(|err| {
                    assert!(err.error.kind() == io::ErrorKind::Other);
                    err
                });

            let cpu_future = pool.spawn(read_future);
            let result = cpu_future.wait();

            assert!(result.is_err());
        }

        remove_file(&file_name);
    }
    */

    #[test]
    fn read_many_blocks_mt() {
        let file_name = temp_file_name();
        create_temp_file(&file_name);

        {
            let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
                open(
                    mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
                    O_DIRECT | O_RDWR,
                )
            });
            let fd = owned_fd.fd;

            let pool = futures_cpupool::CpuPool::new(5);

            {
                let num_slots = 7;
                let context = AioContext::new(&pool, num_slots).unwrap();

                // 50 waves of requests just going above the lmit

                // Waves start here
                for _wave in 0..50 {
                    let mut futures = Vec::new();

                    // Each wave makes 100 I/O requests
                    for index in 0..100 {
                        let buffer = MemoryHandle::new();
                        let read_future = context
                            .read(fd, (index * 8192) % FILE_SIZE, buffer)
                            .map(move |result_buffer| {
                                assert!(validate_block(result_buffer.as_ref()));
                            })
                            .map_err(|err| {
                                panic!("{:?}", err);
                            });

                        futures.push(pool.spawn(read_future));
                    }

                    // wait for all 100 requests to complete
                    let result = futures::future::join_all(futures).wait();

                    assert!(result.is_ok());

                    // all slots have been returned
                    assert!(context.inner.have_capacity.current_capacity() == num_slots);
                }
            }
        }

        remove_file(&file_name);
    }

    // A test with a mixed read/write workload
    #[test]
    fn mixed_read_write() {
        let file_name = temp_file_name();
        create_temp_file(&file_name);

        let owned_fd = OwnedFd::new_from_raw_fd(unsafe {
            open(
                mem::transmute(file_name.as_os_str().as_bytes().as_ptr()),
                O_DIRECT | O_RDWR,
            )
        });
        let fd = owned_fd.fd;

        let mut futures = Vec::new();

        let pool = futures_cpupool::CpuPool::new(5);
        let context = AioContext::new(&pool, 7).unwrap();

        // First access sequence
        let buffer1 = MemoryHandle::new();

        let sequence1 = {
            let context1 = context.clone();
            let context2 = context.clone();
            let context3 = context.clone();
            let context4 = context.clone();
            let context5 = context.clone();
            let context6 = context.clone();

            context1
                .read(fd, 8192, buffer1)
                .map(|mut buffer| -> MemoryHandle {
                    assert!(validate_block(buffer.as_ref()));
                    fill_pattern(0u8, buffer.as_mut());
                    buffer
                })
                .and_then(move |buffer| context2.write(fd, 8192, buffer))
                .and_then(move |buffer| context3.read(fd, 0, buffer))
                .map(|mut buffer| -> MemoryHandle {
                    assert!(validate_block(buffer.as_ref()));
                    fill_pattern(1u8, buffer.as_mut());
                    buffer
                })
                .and_then(move |buffer| context4.write(fd, 0, buffer))
                .and_then(move |buffer| context5.read(fd, 8192, buffer))
                .map(|buffer| -> MemoryHandle {
                    assert!(validate_pattern(0u8, buffer.as_ref()));
                    buffer
                })
                .and_then(move |buffer| context6.read(fd, 0, buffer))
                .map(|buffer| -> MemoryHandle {
                    assert!(validate_pattern(1u8, buffer.as_ref()));
                    buffer
                })
                .map_err(|err| {
                    panic!("{:?}", err);
                })
        };

        // Second access sequence

        let buffer2 = MemoryHandle::new();

        let sequence2 = {
            let context1 = context.clone();
            let context2 = context.clone();
            let context3 = context.clone();
            let context4 = context.clone();
            let context5 = context.clone();
            let context6 = context.clone();

            context1
                .read(fd, 16384, buffer2)
                .map(|mut buffer| -> MemoryHandle {
                    assert!(validate_block(buffer.as_ref()));
                    fill_pattern(2u8, buffer.as_mut());
                    buffer
                })
                .and_then(move |buffer| context2.write(fd, 16384, buffer))
                .and_then(move |buffer| context3.read(fd, 24576, buffer))
                .map(|mut buffer| -> MemoryHandle {
                    assert!(validate_block(buffer.as_ref()));
                    fill_pattern(3u8, buffer.as_mut());
                    buffer
                })
                .and_then(move |buffer| context4.write(fd, 24576, buffer))
                .and_then(move |buffer| context5.read(fd, 16384, buffer))
                .map(|buffer| -> MemoryHandle {
                    assert!(validate_pattern(2u8, buffer.as_ref()));
                    buffer
                })
                .and_then(move |buffer| context6.read(fd, 24576, buffer))
                .map(|buffer| -> MemoryHandle {
                    assert!(validate_pattern(3u8, buffer.as_ref()));
                    buffer
                })
                .map_err(|err| {
                    panic!("{:?}", err);
                })
        };

        // Third access sequence

        let buffer3 = MemoryHandle::new();

        let sequence3 = {
            let context1 = context.clone();
            let context2 = context.clone();
            let context3 = context.clone();
            let context4 = context.clone();
            let context5 = context.clone();
            let context6 = context.clone();

            context1
                .read(fd, 40960, buffer3)
                .map(|mut buffer| -> MemoryHandle {
                    assert!(validate_block(buffer.as_ref()));
                    fill_pattern(5u8, buffer.as_mut());
                    buffer
                })
                .and_then(move |buffer| context2.write(fd, 40960, buffer))
                .and_then(move |buffer| context3.read(fd, 32768, buffer))
                .map(|mut buffer| -> MemoryHandle {
                    assert!(validate_block(buffer.as_ref()));
                    fill_pattern(6u8, buffer.as_mut());
                    buffer
                })
                .and_then(move |buffer| context4.write(fd, 32768, buffer))
                .and_then(move |buffer| context5.read(fd, 40960, buffer))
                .map(|buffer| -> MemoryHandle {
                    assert!(validate_pattern(5u8, buffer.as_ref()));
                    buffer
                })
                .and_then(move |buffer| context6.read(fd, 32768, buffer))
                .map(|buffer| -> MemoryHandle {
                    assert!(validate_pattern(6u8, buffer.as_ref()));
                    buffer
                })
                .map_err(|err| {
                    panic!("{:?}", err);
                })
        };

        // Launch the three futures
        futures.push(pool.spawn(sequence1));
        futures.push(pool.spawn(sequence2));
        futures.push(pool.spawn(sequence3));

        // Wair for completion
        let result = futures::future::join_all(futures).wait();

        assert!(result.is_ok());
    }

    // Fille the buffer with a pattern that has a dependency on the provided key.
    fn fill_pattern(key: u8, buffer: &mut [u8]) {
        // The pattern we generate is an alternation of the key value and an index value
        // For this we ensure that the buffer has an even number of elements
        assert!(buffer.len() % 2 == 0);

        for index in 0..buffer.len() / 2 {
            buffer[index * 2] = key;
            buffer[index * 2 + 1] = index as u8;
        }
    }

    // Validate that the buffer is filled with a pattern as generated by the provided key.
    fn validate_pattern(key: u8, buffer: &[u8]) -> bool {
        // The pattern we generate is an alternation of the key value and an index value
        // For this we ensure that the buffer has an even number of elements
        assert!(buffer.len() % 2 == 0);

        for index in 0..buffer.len() / 2 {
            if (buffer[index * 2] != key) || (buffer[index * 2 + 1] != (index as u8)) {
                return false;
            }
        }

        return true;
    }

    fn validate_block(data: &[u8]) -> bool {
        for index in 0..data.len() {
            if data[index] != index as u8 {
                return false;
            }
        }

        true
    }

    struct OwnedFd {
        fd: RawFd,
    }

    impl OwnedFd {
        fn new_from_raw_fd(fd: RawFd) -> OwnedFd {
            OwnedFd { fd }
        }
    }

    impl Drop for OwnedFd {
        fn drop(&mut self) {
            let result = unsafe { close(self.fd) };
            assert!(result == 0);
        }
    }
}