Struct EnergyMonitorBricklet

Source
pub struct EnergyMonitorBricklet { /* private fields */ }
Expand description

Measures Voltage, Current, Energy, Real/Apparent/Reactive Power, Power Factor and Frequency

Implementations§

Source§

impl EnergyMonitorBricklet

Source

pub const DEVICE_IDENTIFIER: u16 = 2_152u16

Source

pub const DEVICE_DISPLAY_NAME: &'static str = "Energy Monitor Bricklet"

Source

pub fn new(uid: Uid, connection: AsyncIpConnection) -> EnergyMonitorBricklet

Creates an object with the unique device ID uid. This object can then be used after the IP Connection ip_connection is connected.

Source

pub fn get_response_expected( &mut self, fun: EnergyMonitorBrickletFunction, ) -> Result<bool, GetResponseExpectedError>

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by set_response_expected. For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

See set_response_expected for the list of function ID constants available for this function.

Source

pub fn set_response_expected( &mut self, fun: EnergyMonitorBrickletFunction, response_expected: bool, ) -> Result<(), SetResponseExpectedError>

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

Source

pub fn set_response_expected_all(&mut self, response_expected: bool)

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Source

pub fn get_api_version(&self) -> [u8; 3]

Returns the version of the API definition (major, minor, revision) implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

Source

pub async fn get_energy_data_callback_receiver( &mut self, ) -> impl Stream<Item = EnergyDataEvent>

This receiver is triggered periodically according to the configuration set by set_energy_data_callback_configuration.

The parameters are the same as get_energy_data.

Source

pub async fn get_energy_data(&mut self) -> Result<EnergyData, TinkerforgeError>

Returns all of the measurements that are done by the Energy Monitor Bricklet.

  • Voltage RMS
  • Current RMS
  • Energy (integrated over time)
  • Real Power
  • Apparent Power
  • Reactive Power
  • Power Factor
  • Frequency (AC Frequency of the mains voltage)

The frequency is recalculated every 6 seconds.

All other values are integrated over 10 zero-crossings of the voltage sine wave. With a standard AC mains voltage frequency of 50Hz this results in a 5 measurements per second (or an integration time of 200ms per measurement).

If no voltage transformer is connected, the Bricklet will use the current waveform to calculate the frequency and it will use an integration time of 10 zero-crossings of the current waveform.

Source

pub async fn reset_energy(&mut self) -> Result<(), TinkerforgeError>

Sets the energy value (see [get_energy_data]) back to 0Wh.

Source

pub async fn get_waveform_low_level( &mut self, ) -> Result<WaveformLowLevel, TinkerforgeError>

Returns a snapshot of the voltage and current waveform. The values in the returned array alternate between voltage and current. The data from one getter call contains 768 data points for voltage and current, which correspond to about 3 full sine waves.

The voltage is given with a resolution of 100mV and the current is given with a resolution of 10mA.

This data is meant to be used for a non-realtime graphical representation of the voltage and current waveforms.

Source

pub async fn get_transformer_status( &mut self, ) -> Result<TransformerStatus, TinkerforgeError>

Returns true if a voltage/current transformer is connected to the Bricklet.

Source

pub async fn set_transformer_calibration( &mut self, voltage_ratio: u16, current_ratio: u16, phase_shift: i16, ) -> Result<(), TinkerforgeError>

Sets the transformer ratio for the voltage and current transformer in 1/100 form.

Example: If your mains voltage is 230V, you use 9V voltage transformer and a 1V:30A current clamp your voltage ratio is 230/9 = 25.56 and your current ratio is 30/1 = 30.

In this case you have to set the values 2556 and 3000 for voltage ratio and current ratio.

The calibration is saved in non-volatile memory, you only have to set it once.

Set the phase shift to 0. It is for future use and currently not supported by the Bricklet.

Source

pub async fn get_transformer_calibration( &mut self, ) -> Result<TransformerCalibration, TinkerforgeError>

Returns the transformer calibration as set by [set_transformer_calibration].

Source

pub async fn calibrate_offset(&mut self) -> Result<(), TinkerforgeError>

Calling this function will start an offset calibration. The offset calibration will integrate the voltage and current waveform over a longer time period to find the 0 transition point in the sine wave.

The Bricklet comes with a factory-calibrated offset value, you should not have to call this function.

If you want to re-calibrate the offset we recommend that you connect a load that has a smooth sinusoidal voltage and current waveform. Alternatively you can also short both inputs.

The calibration is saved in non-volatile memory, you only have to set it once.

Source

pub async fn set_energy_data_callback_configuration( &mut self, period: u32, value_has_to_change: bool, ) -> Result<(), TinkerforgeError>

The period is the period with which the [get_energy_data_callback_receiver] receiver is triggered periodically. A value of 0 turns the receiver off.

If the value has to change-parameter is set to true, the receiver is only triggered after the value has changed. If the value didn’t change within the period, the receiver is triggered immediately on change.

If it is set to false, the receiver is continuously triggered with the period, independent of the value.

Source

pub async fn get_energy_data_callback_configuration( &mut self, ) -> Result<EnergyDataCallbackConfiguration, TinkerforgeError>

Returns the receiver configuration as set by [set_energy_data_callback_configuration].

Source

pub async fn get_spitfp_error_count( &mut self, ) -> Result<SpitfpErrorCount, TinkerforgeError>

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

Source

pub async fn set_bootloader_mode( &mut self, mode: u8, ) -> Result<u8, TinkerforgeError>

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Associated constants:

  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_OK
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
Source

pub async fn get_bootloader_mode(&mut self) -> Result<u8, TinkerforgeError>

Returns the current bootloader mode, see [set_bootloader_mode].

Associated constants:

  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
  • ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
Source

pub async fn set_write_firmware_pointer( &mut self, pointer: u32, ) -> Result<(), TinkerforgeError>

Sets the firmware pointer for [write_firmware]. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Source

pub async fn write_firmware( &mut self, data: &[u8; 64], ) -> Result<u8, TinkerforgeError>

Writes 64 Bytes of firmware at the position as written by [set_write_firmware_pointer] before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Source

pub async fn set_status_led_config( &mut self, config: u8, ) -> Result<(), TinkerforgeError>

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

Associated constants:

  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_OFF
  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_ON
  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
Source

pub async fn get_status_led_config(&mut self) -> Result<u8, TinkerforgeError>

Returns the configuration as set by [set_status_led_config]

Associated constants:

  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_OFF
  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_ON
  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
  • ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
Source

pub async fn get_chip_temperature(&mut self) -> Result<i16, TinkerforgeError>

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

Source

pub async fn reset(&mut self) -> Result<(), TinkerforgeError>

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

Source

pub async fn write_uid(&mut self, uid: u32) -> Result<(), TinkerforgeError>

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

Source

pub async fn read_uid(&mut self) -> Result<u32, TinkerforgeError>

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Source

pub async fn get_identity(&mut self) -> Result<Identity, TinkerforgeError>

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’ or ‘h’ (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position ‘z’.

The device identifier numbers can be found here. |device_identifier_constant|

Trait Implementations§

Source§

impl Clone for EnergyMonitorBricklet

Source§

fn clone(&self) -> EnergyMonitorBricklet

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.