#[repr(C)]pub struct Matrix4<S> {
    pub x: Vector4<S>,
    pub y: Vector4<S>,
    pub z: Vector4<S>,
    pub w: Vector4<S>,
}Expand description
A 4 x 4, column major matrix
This type is marked as #[repr(C)].
Fields§
§x: Vector4<S>The first column of the matrix.
y: Vector4<S>The second column of the matrix.
z: Vector4<S>The third column of the matrix.
w: Vector4<S>The fourth column of the matrix.
Implementations§
Source§impl<S> Matrix4<S>
 
impl<S> Matrix4<S>
Source§impl<S> Matrix4<S>where
    S: BaseFloat,
 
impl<S> Matrix4<S>where
    S: BaseFloat,
Sourcepub fn from_translation(v: Vector3<S>) -> Matrix4<S>
 
pub fn from_translation(v: Vector3<S>) -> Matrix4<S>
Create a homogeneous transformation matrix from a translation vector.
Sourcepub fn from_scale(value: S) -> Matrix4<S>
 
pub fn from_scale(value: S) -> Matrix4<S>
Create a homogeneous transformation matrix from a scale value.
Sourcepub fn from_nonuniform_scale(x: S, y: S, z: S) -> Matrix4<S>
 
pub fn from_nonuniform_scale(x: S, y: S, z: S) -> Matrix4<S>
Create a homogeneous transformation matrix from a set of scale values.
Sourcepub fn look_at_dir(
    eye: Point3<S>,
    dir: Vector3<S>,
    up: Vector3<S>,
) -> Matrix4<S>
 👎Deprecated: Use Matrix4::look_to_rh
pub fn look_at_dir( eye: Point3<S>, dir: Vector3<S>, up: Vector3<S>, ) -> Matrix4<S>
Create a homogeneous transformation matrix that will cause a vector to point at
dir, using up for orientation.
Sourcepub fn look_to_rh(eye: Point3<S>, dir: Vector3<S>, up: Vector3<S>) -> Matrix4<S>
 
pub fn look_to_rh(eye: Point3<S>, dir: Vector3<S>, up: Vector3<S>) -> Matrix4<S>
Create a homogeneous transformation matrix that will cause a vector to point at
dir, using up for orientation.
Sourcepub fn look_to_lh(eye: Point3<S>, dir: Vector3<S>, up: Vector3<S>) -> Matrix4<S>
 
pub fn look_to_lh(eye: Point3<S>, dir: Vector3<S>, up: Vector3<S>) -> Matrix4<S>
Create a homogeneous transformation matrix that will cause a vector to point at
dir, using up for orientation.
Sourcepub fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
 👎Deprecated: Use Matrix4::look_at_rh
pub fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
Create a homogeneous transformation matrix that will cause a vector to point at
center, using up for orientation.
Sourcepub fn look_at_rh(
    eye: Point3<S>,
    center: Point3<S>,
    up: Vector3<S>,
) -> Matrix4<S>
 
pub fn look_at_rh( eye: Point3<S>, center: Point3<S>, up: Vector3<S>, ) -> Matrix4<S>
Create a homogeneous transformation matrix that will cause a vector to point at
center, using up for orientation.
Sourcepub fn look_at_lh(
    eye: Point3<S>,
    center: Point3<S>,
    up: Vector3<S>,
) -> Matrix4<S>
 
pub fn look_at_lh( eye: Point3<S>, center: Point3<S>, up: Vector3<S>, ) -> Matrix4<S>
Create a homogeneous transformation matrix that will cause a vector to point at
center, using up for orientation.
Sourcepub fn from_angle_x<A>(theta: A) -> Matrix4<S>
 
pub fn from_angle_x<A>(theta: A) -> Matrix4<S>
Create a homogeneous transformation matrix from a rotation around the x axis (pitch).
Sourcepub fn from_angle_y<A>(theta: A) -> Matrix4<S>
 
pub fn from_angle_y<A>(theta: A) -> Matrix4<S>
Create a homogeneous transformation matrix from a rotation around the y axis (yaw).
Sourcepub fn from_angle_z<A>(theta: A) -> Matrix4<S>
 
pub fn from_angle_z<A>(theta: A) -> Matrix4<S>
Create a homogeneous transformation matrix from a rotation around the z axis (roll).
Sourcepub fn from_axis_angle<A>(axis: Vector3<S>, angle: A) -> Matrix4<S>
 
pub fn from_axis_angle<A>(axis: Vector3<S>, angle: A) -> Matrix4<S>
Create a homogeneous transformation matrix from an angle around an arbitrary axis.
The specified axis must be normalized, or it represents an invalid rotation.
Trait Implementations§
Source§impl<S> AbsDiffEq for Matrix4<S>where
    S: BaseFloat,
 
impl<S> AbsDiffEq for Matrix4<S>where
    S: BaseFloat,
Source§fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
 
fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
Source§fn abs_diff_eq(
    &self,
    other: &Matrix4<S>,
    epsilon: <S as AbsDiffEq>::Epsilon,
) -> bool
 
fn abs_diff_eq( &self, other: &Matrix4<S>, epsilon: <S as AbsDiffEq>::Epsilon, ) -> bool
Source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
 
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq.Source§impl<S> AddAssign for Matrix4<S>
 
impl<S> AddAssign for Matrix4<S>
Source§fn add_assign(&mut self, other: Matrix4<S>)
 
fn add_assign(&mut self, other: Matrix4<S>)
+= operation. Read moreSource§impl<S> DivAssign<S> for Matrix4<S>
 
impl<S> DivAssign<S> for Matrix4<S>
Source§fn div_assign(&mut self, scalar: S)
 
fn div_assign(&mut self, scalar: S)
/= operation. Read moreSource§impl<S> From<Perspective<S>> for Matrix4<S>where
    S: BaseFloat,
 
impl<S> From<Perspective<S>> for Matrix4<S>where
    S: BaseFloat,
Source§fn from(persp: Perspective<S>) -> Matrix4<S>
 
fn from(persp: Perspective<S>) -> Matrix4<S>
Source§impl<S> From<PerspectiveFov<S>> for Matrix4<S>where
    S: BaseFloat,
 
impl<S> From<PerspectiveFov<S>> for Matrix4<S>where
    S: BaseFloat,
Source§fn from(persp: PerspectiveFov<S>) -> Matrix4<S>
 
fn from(persp: PerspectiveFov<S>) -> Matrix4<S>
Source§impl<S> From<Quaternion<S>> for Matrix4<S>where
    S: BaseFloat,
 
impl<S> From<Quaternion<S>> for Matrix4<S>where
    S: BaseFloat,
Source§fn from(quat: Quaternion<S>) -> Matrix4<S>
 
fn from(quat: Quaternion<S>) -> Matrix4<S>
Convert the quaternion to a 4 x 4 rotation matrix.
Source§impl<S> Matrix for Matrix4<S>where
    S: BaseFloat,
 
impl<S> Matrix for Matrix4<S>where
    S: BaseFloat,
Source§impl<S> MulAssign<S> for Matrix4<S>
 
impl<S> MulAssign<S> for Matrix4<S>
Source§fn mul_assign(&mut self, scalar: S)
 
fn mul_assign(&mut self, scalar: S)
*= operation. Read moreSource§impl<S> RelativeEq for Matrix4<S>where
    S: BaseFloat,
 
impl<S> RelativeEq for Matrix4<S>where
    S: BaseFloat,
Source§fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
 
fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
Source§fn relative_eq(
    &self,
    other: &Matrix4<S>,
    epsilon: <S as AbsDiffEq>::Epsilon,
    max_relative: <S as AbsDiffEq>::Epsilon,
) -> bool
 
fn relative_eq( &self, other: &Matrix4<S>, epsilon: <S as AbsDiffEq>::Epsilon, max_relative: <S as AbsDiffEq>::Epsilon, ) -> bool
Source§fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon,
) -> bool
 
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
RelativeEq::relative_eq.Source§impl<S> RemAssign<S> for Matrix4<S>
 
impl<S> RemAssign<S> for Matrix4<S>
Source§fn rem_assign(&mut self, scalar: S)
 
fn rem_assign(&mut self, scalar: S)
%= operation. Read moreSource§impl<S> SquareMatrix for Matrix4<S>where
    S: BaseFloat,
 
impl<S> SquareMatrix for Matrix4<S>where
    S: BaseFloat,
Source§fn from_value(value: S) -> Matrix4<S>
 
fn from_value(value: S) -> Matrix4<S>
Source§fn from_diagonal(value: Vector4<S>) -> Matrix4<S>
 
fn from_diagonal(value: Vector4<S>) -> Matrix4<S>
Source§fn transpose_self(&mut self)
 
fn transpose_self(&mut self)
Source§fn determinant(&self) -> S
 
fn determinant(&self) -> S
Source§fn invert(&self) -> Option<Matrix4<S>>
 
fn invert(&self) -> Option<Matrix4<S>>
m.mul_m(m.invert()) is
the identity matrix. Returns None if this matrix is not invertible
(has a determinant of zero).Source§fn is_diagonal(&self) -> bool
 
fn is_diagonal(&self) -> bool
Source§fn is_symmetric(&self) -> bool
 
fn is_symmetric(&self) -> bool
Source§fn identity() -> Self
 
fn identity() -> Self
Source§fn trace(&self) -> Self::Scalar
 
fn trace(&self) -> Self::Scalar
Source§fn is_identity(&self) -> boolwhere
    Self: UlpsEq,
 
fn is_identity(&self) -> boolwhere
    Self: UlpsEq,
Source§impl<S> SubAssign for Matrix4<S>
 
impl<S> SubAssign for Matrix4<S>
Source§fn sub_assign(&mut self, other: Matrix4<S>)
 
fn sub_assign(&mut self, other: Matrix4<S>)
-= operation. Read moreSource§impl<S> Transform<Point3<S>> for Matrix4<S>where
    S: BaseFloat,
 
impl<S> Transform<Point3<S>> for Matrix4<S>where
    S: BaseFloat,
Source§fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
 
fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
center from
eye, using up for orientation.Source§fn look_at_lh(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
 
fn look_at_lh(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
center from
eye, using up for orientation.Source§fn look_at_rh(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
 
fn look_at_rh(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S>
center from
eye, using up for orientation.