1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//!
//! A hierarchical thread pool used for splitting work in a branching fashion.
//!
//! This thread pool is good for:
//!
//! - You want to split work recursively in jobs that use approximately the same time.
//! - You want thread pool overhead to be low
//!
//! This is not good for:
//!
//! - You need work stealing
//! - When you have jobs of uneven size
//!

// Stack jobs and job execution implementation based on rayon-core by Niko Matsakis and Josh Stone
//
use crossbeam_channel::{Sender, bounded};

use std::thread;

mod unwind;
mod job;

use crate::job::{JobRef, StackJob};

// ThreadTree message on the channel (is just a job ref)
type TTreeMessage = JobRef;

/// A hierarchical thread pool used for splitting work in a branching fashion.
///
/// See [`ThreadTree::new_with_level()`] to create a new thread tree,
/// and see [`ThreadTree::top()`] for a usage example.
///
/// The thread tree has the benefit that at each level, jobs can be sent directly to the thread
/// that is going to execute it - that means there is no contention between waiting threads. The
/// downside is that the structure of the thread tree is rather static.
#[derive(Debug)]
pub struct ThreadTree {
    sender: Option<Sender<TTreeMessage>>,
    child: Option<[Box<ThreadTree>; 2]>,
}

// Only three threads needed to have four leaves, see below.
//
//           (root)
//      (1)            2 
// (1.1)   1.2   (2.1)   2.2
//
// Leaves 1.1, 1.2, 2.1 and 2.2 but only 1.2, 2, and 2.2 are new threads - the others inherit the
// current thread from the parent.  That means we have a fanout of four (leaves 1.1 trough 2.2)
// using the current thread and three additional threads.
//
// The implementation is such that the root holds ownership of leaf 2, and the root contains a
// channel sender that passes jobs to the node 2.  Further nodes down continue the same way
// recursively.
//
// Idea for later: implement reservations of (parts of) the tree?
// So that a 2-2 tree can be used as two separate 1-2 trees simultaneously

impl ThreadTree {
    const BOTTOM: &'static Self = &ThreadTree::new_level0();

    /// Create a level 0 tree (with no parallelism)
    #[inline]
    pub const fn new_level0() -> Self {
        ThreadTree { sender: None, child: None }
    }

    /// Create an n-level thread tree with 2<sup>n</sup> leaves
    ///
    /// Level 0 has no parallelism
    /// Level 1 has two nodes
    /// Level 2 has four nodes (et.c.)
    ///
    /// Level must be <= 12; panics on invalid input
    pub fn new_with_level(level: usize) -> Box<Self> {
        assert!(level <= 12,
                "Input exceeds maximum level 12 (equivalent to 2**12 - 1 threads), got level='{}'",
                level);
        if level == 0 {
            Box::new(Self::new_level0())
        } else if level == 1 {
            Box::new(ThreadTree { sender: Some(Self::add_thread()), child: None })
        } else {
            let fork_2 = Self::new_with_level(level - 1);
            let fork_3 = Self::new_with_level(level - 1);
            Box::new(ThreadTree { sender: Some(Self::add_thread()), child: Some([fork_2, fork_3])})
        }
    }

    /// Return true if this is a non-dummy pool which will parallelize in join
    #[inline]
    pub fn is_parallel(&self) -> bool {
        self.sender.is_some()
    }

    /// Get the top thread tree context, where we can inject tasks with join.
    /// Each job gets a sub-context that can be used to inject tasks further down the corresponding
    /// branch of the tree.
    ///
    /// **Note** to avoid deadlocks, tasks should never be injected into a tree context that
    /// doesn't belong to the current level. To avoid this should be easy - only call .top() at the
    /// top level.
    ///
    /// The following example shows using a two-level tree and using context to spawn tasks.
    ///
    /// ```
    /// use thread_tree::{ThreadTree, ThreadTreeCtx};
    ///
    /// let tp = ThreadTree::new_with_level(2);
    ///
    /// fn f(index: i32, ctx: ThreadTreeCtx<'_>) -> i32 {
    ///     // do work in subtasks here
    ///     let (a, b) = ctx.join(move |_| index + 1, |_| index + 2);
    ///
    ///     return a + b;
    /// }
    ///
    /// let (r0, r1) = tp.top().join(|ctx| f(0, ctx), |ctx| f(1, ctx));
    ///
    /// assert_eq!(r0 + r1, (0 + 1) + (0 + 2) + (1 + 1) + (1 + 2));
    /// ```
    #[inline]
    pub fn top(&self) -> ThreadTreeCtx<'_> {
        ThreadTreeCtx::from(self)
    }

    // Create a new thread that executes jobs, and return the channel sender that feeds jobs to
    // this thread.
    fn add_thread() -> Sender<TTreeMessage> {
        let (sender, receiver) = bounded::<TTreeMessage>(1); // buffered, we know we have a connection
        std::thread::spawn(move || {
            for job in receiver {
                unsafe {
                    job.execute()
                }
            }
        });
        sender
    }
}

/// A level-specific handle to the thread tree, that can be used to inject jobs.
///
/// See [`ThreadTree::top()`] for more information.
#[derive(Debug, Copy, Clone)]
pub struct ThreadTreeCtx<'a> {
    tree: &'a ThreadTree,
    // This handle is marked as non-Send/Sync as a help - there is nothing safety critical about it
    // - but it helps the user to avoid deadlocks - see the top method.
    _not_send_sync: *const (),
}

impl ThreadTreeCtx<'_> {
    #[inline]
    pub(crate) fn get(&self) -> &ThreadTree { self.tree }

    #[inline]
    pub(crate) fn from(tree: &ThreadTree) -> ThreadTreeCtx<'_> {
        ThreadTreeCtx { tree, _not_send_sync: &() }
    }

    /// Return true if this level will parallelize in join (or if we are at the bottom of the tree)
    #[inline]
    pub fn is_parallel(&self) -> bool {
        self.get().is_parallel()
    }

    /// Branch out and run a and b simultaneously and return their results jointly.
    ///
    /// Job `a` runs on the current thread while `b` runs on the sibling thread; each is passed
    /// a lower level of the thread tree.
    /// If the bottom of the tree is reached, where no sibling threads are available, both `a` and
    /// `b` run on the current thread.
    ///
    /// If either `a` or `b` panics, the panic is propagated here. If both jobs are executing,
    /// the panic will not propagate until after both jobs have finished.
    /// 
    /// Warning: You must not .join() into the same tree from nested jobs. Nested jobs must
    /// be spawned using the context that each job receives as the first parameter.
    pub fn join<A, B, RA, RB>(&self, a: A, b: B) -> (RA, RB)
        where A: FnOnce(ThreadTreeCtx) -> RA + Send,
              B: FnOnce(ThreadTreeCtx) -> RB + Send,
              RA: Send,
              RB: Send,
    {
        let bottom_level = ThreadTree::BOTTOM;
        let self_ = self.get();
        let (fork_a, fork_b) = match &self_.child {
            None => (bottom_level, bottom_level),
            Some([fa, fb]) => (&**fa, &**fb),
        };
        //assert!(self_.sender.is_some());

        unsafe {
            let a = move || a(ThreadTreeCtx::from(fork_a));
            let b = move || b(ThreadTreeCtx::from(fork_b));

            // first send B to the sibling thread
            let b_job = StackJob::new(b); // plant this safely on the stack
            let b_job_ref = JobRef::new(&b_job);
            let b_runs_here = match self_.sender {
                Some(ref s) => { s.send(b_job_ref).unwrap(); None }
                None => Some(b_job_ref),
            };

            let a_result;
            {
                // Ensure that we will later wait for B, if it is running on
                // another thread. Both in the case of A panic or regular scope exit.
                //
                // If job A panics, we still cannot return until we are sure that job
                // B is complete. This is because it may contain references into the
                // enclosing stack frame(s).
                let _wait_for_b_guard = match b_runs_here {
                    None => Some(WaitForJobGuard::new(&b_job)),
                    Some(_) => None,
                };

                // Execute task A
                a_result = a();

                if let Some(b_job_ref) = b_runs_here {
                    b_job_ref.execute();
                }
                // wait for b here
            }
            (a_result, b_job.into_result())
        }
    }

    /// Branch out twice and join, running three different jobs
    ///
    /// Branches twice on the left side and once on the right.
    /// The closure is called with corresponding thread tree context and an index in 0..3 for the job.
    pub fn join3l<A, RA>(&self, a: &A) -> ((RA, RA), RA)
        where A: Fn(ThreadTreeCtx, usize) -> RA + Sync,
              RA: Send,
    {
        self.join(
            move |ctx| ctx.join(move |ctx| a(ctx, 0), move |ctx| a(ctx, 1)),
            move |ctx| a(ctx, 2))
    }

    /// Branch out twice and join, running three different jobs
    ///
    /// Branches once on the right side and twice on the right.
    /// The closure is called with corresponding thread tree context and an index in 0..3 for the job.
    pub fn join3r<A, RA>(&self, a: &A) -> (RA, (RA, RA))
        where A: Fn(ThreadTreeCtx, usize) -> RA + Sync,
              RA: Send,
    {
        self.join(
            move |ctx| a(ctx, 0),
            move |ctx| ctx.join(move |ctx| a(ctx, 1), move |ctx| a(ctx, 2)))
    }

    /// Branch out twice and join, running four different jobs.
    ///
    /// Branches twice on each side.
    /// The closure is called with corresponding thread tree context and an index in 0..4 for the job.
    pub fn join4<A, RA>(&self, a: &A) -> ((RA, RA), (RA, RA))
        where A: Fn(ThreadTreeCtx, usize) -> RA + Sync,
              RA: Send,
    {
        self.join(
            move |ctx| ctx.join(move |ctx| a(ctx, 0), move |ctx| a(ctx, 1)),
            move |ctx| ctx.join(move |ctx| a(ctx, 2), move |ctx| a(ctx, 3)))
    }
}


fn wait_for_job<F, R>(job: &StackJob<F, R>) {
    while !job.probe() {
        //spin_loop_hint();
        thread::yield_now();
    }
}

struct WaitForJobGuard<'a, F, R> {
    job: &'a StackJob<F, R>,
}

impl<'a, F, R> WaitForJobGuard<'a, F, R>
{
    fn new(job: &'a StackJob<F, R>) -> Self {
        Self { job }
    }
}

impl<'a, F, R> Drop for WaitForJobGuard<'a, F, R> {
    fn drop(&mut self) {
        wait_for_job(self.job)
    }
}

#[cfg(test)]
mod thread_tree_tests {
    use super::*;
    #[allow(deprecated)]

    use std::sync::atomic::AtomicUsize;
    use std::sync::atomic::Ordering;
    use std::sync::Mutex;
    use once_cell::sync::Lazy;
    use std::collections::HashSet;
    use std::thread;
    use std::thread::ThreadId;

    #[allow(deprecated)]
    fn sleep_ms(x: u32) {
        std::thread::sleep_ms(x)
    }

    #[test]
    fn stub() {
        let tp = ThreadTree::new_level0();
        let a = AtomicUsize::new(0);
        let b = AtomicUsize::new(0);

        tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
                |_| b.fetch_add(1, Ordering::SeqCst));
        assert_eq!(a.load(Ordering::SeqCst), 1);
        assert_eq!(b.load(Ordering::SeqCst), 1);

        let f = || thread::current().id();
        let (aid, bid) = tp.top().join(|_| f(), |_| f());
        assert_eq!(aid, bid);
        assert!(!tp.top().is_parallel());
    }

    #[test]
    fn new_level_1() {
        let tp = ThreadTree::new_with_level(1);
        let a = AtomicUsize::new(0);
        let b = AtomicUsize::new(0);

        tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
                |_| b.fetch_add(1, Ordering::SeqCst));
        assert_eq!(a.load(Ordering::SeqCst), 1);
        assert_eq!(b.load(Ordering::SeqCst), 1);

        let f = || thread::current().id();
        let (aid, bid) = tp.top().join(|_| f(), |_| f());
        assert_ne!(aid, bid);
        assert!(tp.top().is_parallel());
    }

    #[test]
    fn build_level_2() {
        let tp = ThreadTree::new_with_level(2);
        let a = AtomicUsize::new(0);
        let b = AtomicUsize::new(0);

        tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
                |_| b.fetch_add(1, Ordering::SeqCst));
        assert_eq!(a.load(Ordering::SeqCst), 1);
        assert_eq!(b.load(Ordering::SeqCst), 1);

        let f = || thread::current().id();
        let ((aid, bid), (cid, did)) = tp.top().join(
            |tp1| tp1.join(|_| f(), |_| f()),
            |tp1| tp1.join(|_| f(), |_| f()));
        assert_ne!(aid, bid);
        assert_ne!(aid, cid);
        assert_ne!(aid, did);
        assert_ne!(bid, cid);
        assert_ne!(bid, did);
        assert_ne!(cid, did);
    }

    #[test]
    fn overload_2_2() {
        let global = ThreadTree::new_with_level(1);
        let tp = ThreadTree::new_with_level(2);
        let a = AtomicUsize::new(0);

        let range = 0..100;

        let work = |ctx: ThreadTreeCtx<'_>| {
            let subwork = || {
                for i in range.clone() {
                    a.fetch_add(i, Ordering::Relaxed);
                    sleep_ms(1);
                }
            };
            ctx.join(|_| subwork(), |_| subwork());
        };

        global.top().join(
            |_| tp.top().join(work, work),
            |_| tp.top().join(work, work));

        let sum = range.clone().sum::<usize>();

        assert_eq!(sum * 4 * 2, a.load(Ordering::SeqCst));

    }

    #[test]
    fn deep_tree() {
        static THREADS: Lazy<Mutex<HashSet<ThreadId>>> = Lazy::new(|| Mutex::default());
        const TREE_LEVEL: usize = 8;
        const MAX_DEPTH: usize = 12;

        static COUNT: AtomicUsize = AtomicUsize::new(0);

        let tp = ThreadTree::new_with_level(TREE_LEVEL);

        fn f(tp: ThreadTreeCtx<'_>, depth: usize) {
            COUNT.fetch_add(1, Ordering::SeqCst);
            THREADS.lock().unwrap().insert(thread::current().id());
            if depth >= MAX_DEPTH {
                return;
            }
            tp.join(
                |ctx| {
                    f(ctx, depth + 1);
                },
                |ctx| {
                    f(ctx, depth + 1);
                });
        }

        COUNT.fetch_add(2, Ordering::SeqCst); // for the two invocations below.
        tp.top().join(|ctx| f(ctx, 2), |ctx| f(ctx, 2));
        let visited_threads = THREADS.lock().unwrap().len();
        assert_eq!(visited_threads, 1 << TREE_LEVEL);
        assert_eq!(COUNT.load(Ordering::SeqCst), 1 << MAX_DEPTH);
    }

    #[test]
    #[should_panic]
    fn panic_a() {
        let pool = ThreadTree::new_with_level(1);
        pool.top().join(|_| panic!("Panic in A"), |_| 1 + 1);
    }

    #[test]
    #[should_panic]
    fn panic_b() {
        let pool = ThreadTree::new_with_level(1);
        pool.top().join(|_| 1 + 1, |_| panic!());
    }

    #[test]
    #[should_panic]
    fn panic_both_in_threads() {
        let pool = ThreadTree::new_with_level(1);
        pool.top().join(|_| { sleep_ms(50); panic!("Panic in A") }, |_| panic!("Panic in B"));
    }

    #[test]
    #[should_panic]
    fn panic_both_bottom() {
        let pool = ThreadTree::new_with_level(0);
        pool.top().join(|_| { sleep_ms(50); panic!("Panic in A") }, |_| panic!("Panic in B"));
    }

    #[test]
    fn on_panic_a_wait_for_b() {
        let pool = ThreadTree::new_with_level(1);
        for i in 0..3 {
            let start = AtomicUsize::new(0);
            let finish = AtomicUsize::new(0);
            let result = unwind::halt_unwinding(|| {
                pool.top().join(
                    |_| panic!("Panic in A"),
                    |_| {
                        start.fetch_add(1, Ordering::SeqCst);
                        sleep_ms(50);
                        finish.fetch_add(1, Ordering::SeqCst);
                    });
            });
            let start_count = start.load(Ordering::SeqCst);
            let finish_count = finish.load(Ordering::SeqCst);
            assert_eq!(start_count, finish_count);
            assert!(result.is_err());
            println!("Pass {} with start: {} == finish {}", i,
                     start_count, finish_count);
        }
    }
}