Struct thin_engine::prelude::Program
source · pub struct Program { /* private fields */ }
Expand description
A combination of shaders linked together.
Implementations§
source§impl Program
impl Program
sourcepub fn new<'a, F, I>(
facade: &F,
input: I,
) -> Result<Program, ProgramCreationError>
pub fn new<'a, F, I>( facade: &F, input: I, ) -> Result<Program, ProgramCreationError>
Builds a new program.
sourcepub fn from_source<'a, F>(
facade: &F,
vertex_shader: &'a str,
fragment_shader: &'a str,
geometry_shader: Option<&'a str>,
) -> Result<Program, ProgramCreationError>
pub fn from_source<'a, F>( facade: &F, vertex_shader: &'a str, fragment_shader: &'a str, geometry_shader: Option<&'a str>, ) -> Result<Program, ProgramCreationError>
Builds a new program from GLSL source code.
A program is a group of shaders linked together.
§Parameters
vertex_shader
: Source code of the vertex shader.fragment_shader
: Source code of the fragment shader.geometry_shader
: Source code of the geometry shader.
§Example
let program = glium::Program::from_source(&display, vertex_source, fragment_source,
Some(geometry_source));
Examples found in repository?
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
fn main() {
use Action::*;
let (event_loop, window, display) = thin_engine::set_up().unwrap();
window.set_title("Walk Test");
let _ = window.set_cursor_grab(CursorGrabMode::Locked);
window.set_cursor_visible(false);
let mut input = InputMap::new([
(vec![Input::keycode(KeyCode::Space)], Jump),
(vec![Input::keycode(KeyCode::ArrowLeft), Input::keycode(KeyCode::KeyA)], Left),
(vec![Input::keycode(KeyCode::ArrowRight), Input::keycode(KeyCode::KeyD)], Right),
(vec![Input::keycode(KeyCode::ArrowUp), Input::keycode(KeyCode::KeyW)], Forward),
(vec![Input::keycode(KeyCode::ArrowDown), Input::keycode(KeyCode::KeyS)], Back)
]);
let (indices, verts, norms) = mesh!(
&display, &teapot::INDICES, &teapot::VERTICES, &teapot::NORMALS
);
let draw_parameters = DrawParameters {
backface_culling: draw_parameters::BackfaceCullingMode::CullClockwise,
..params::alias_3d()
};
let program = Program::from_source(
&display, shaders::VERTEX,
"#version 140
out vec4 colour;
in vec3 v_normal;
uniform vec3 light;
const vec3 albedo = vec3(0.1, 1.0, 0.3);
void main(){
float light_level = dot(light, v_normal);
colour = vec4(albedo * light_level, 1.0);
}", None,
).unwrap();
let mut pos = vec3(0.0, 0.0, -30.0);
let mut rot = vec2(0.0, 0.0);
let mut gravity = 0.0;
const DELTA: f32 = 0.016;
thin_engine::run(event_loop, &mut input, |input| {
display.resize(window.inner_size().into());
let mut frame = display.draw();
let view = Mat4::view_matrix_3d(frame.get_dimensions(), 1.0, 1024.0, 0.1);
//handle gravity and jump
gravity += DELTA * 9.5;
if input.pressed(Jump) {
gravity = -10.0;
}
//set camera rotation
rot += input.mouse_move.scale(DELTA * 2.0);
rot.y = rot.y.clamp(-PI / 2.0, PI / 2.0);
let rx = Quaternion::from_y_rotation(rot.x);
let ry = Quaternion::from_x_rotation(rot.y);
let rot = rx * ry;
//move player based on view and gravity
let x = input.axis(Right, Left);
let y = input.axis(Forward, Back);
let move_dir = vec3(x, 0.0, y).normalise();
pos += move_dir.transform(&Mat3::from_rot(rx)).scale(5.0 * DELTA);
pos.y = (pos.y - gravity * DELTA).max(0.0);
frame.clear_color_and_depth((0.0, 0.0, 0.0, 1.0), 1.0);
//draw teapot
frame.draw(
(&verts, &norms), &indices,
&program, &uniform! {
view: view,
model: Mat4::from_scale(Vec3::splat(0.1)),
camera: Mat4::from_inverse_transform(pos, Vec3::ONE, rot),
light: vec3(1.0, -0.9, -1.0).normalise()
},
&draw_parameters,
).unwrap();
frame.finish().unwrap();
thread::sleep(Duration::from_millis(16));
}).unwrap();
}
More examples
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
fn main() {
use Action::*;
let (event_loop, window, display) = thin_engine::set_up().unwrap();
window.set_title("FXAA Test");
let _ = window.set_cursor_grab(CursorGrabMode::Locked);
window.set_cursor_visible(false);
let mut colour = ResizableTexture2D::default();
let mut depth = ResizableDepthTexture2D::default();
let mut input = InputMap::new([
(vec![Input::keycode(KeyCode::ArrowLeft), Input::keycode(KeyCode::KeyA)], Left),
(vec![Input::keycode(KeyCode::ArrowRight), Input::keycode(KeyCode::KeyD)], Right),
(vec![Input::keycode(KeyCode::ArrowUp), Input::keycode(KeyCode::KeyW)], Forward),
(vec![Input::keycode(KeyCode::ArrowDown), Input::keycode(KeyCode::KeyS)], Back),
(vec![Input::keycode(KeyCode::KeyF)], FXAA),
(vec![Input::keycode(KeyCode::Space)], Jump)
]);
let (screen_indices, verts, uvs) = mesh!(
&display, &screen::INDICES, &screen::VERTICES, &screen::UVS
);
let screen_mesh = (&verts, &uvs);
let (indices, verts, norms) = mesh!(
&display, &teapot::INDICES, &teapot::VERTICES, &teapot::NORMALS
);
let teapot_mesh = (&verts, &norms);
let draw_parameters = DrawParameters {
backface_culling: draw_parameters::BackfaceCullingMode::CullClockwise,
..params::alias_3d()
};
let mut fxaa_on = true;
let program = Program::from_source(
&display, shaders::VERTEX,
"#version 140
out vec4 colour;
in vec3 v_normal;
uniform vec3 light;
uniform mat4 camera;
uniform vec3 ambient;
uniform vec3 albedo;
uniform float shine;
void main() {
vec3 camera_dir = inverse(mat3(camera)) * vec3(0, 0, -1);
vec3 half_dir = normalize(camera_dir + light);
float specular = pow(max(dot(half_dir, v_normal), 0.0), shine);
float light_level = max(dot(light, v_normal), 0.0);
colour = vec4(albedo * light_level + ambient + vec3(specular), 1.0);
}", None
).unwrap();
let fxaa = shaders::fxaa_shader(&display).unwrap();
let normal = Program::from_source(
&display, shaders::SCREEN_VERTEX,
"#version 140
in vec2 uv;
uniform sampler2D tex;
out vec4 colour;
void main() {
colour = texture(tex, uv);
}", None
).unwrap();
let mut pos = vec3(0.0, 0.0, -30.0);
let mut rot = vec2(0.0, 0.0);
const DELTA: f32 = 0.016;
thin_engine::run(event_loop, &mut input, |input| {
// using a small resolution to show the effect.
// `let size = window.inner_size().into();`
// can be used isntead to set resolution to window size
let size = (380, 216);
display.resize(size);
depth.resize_to_display(&display);
colour.resize_to_display(&display);
//press f to toggle FXAA
if input.pressed(FXAA) { fxaa_on = !fxaa_on }
let colour = colour.texture.as_ref().unwrap();
let depth = depth.texture.as_ref().unwrap();
let mut frame = SimpleFrameBuffer::with_depth_buffer(
&display, colour, depth
).unwrap();
let view = Mat4::view_matrix_3d(size, 1.0, 1024.0, 0.1);
//set camera rotation
rot += input.mouse_move.scale(DELTA * 2.0);
rot.y = rot.y.clamp(-PI / 2.0, PI / 2.0);
let rx = Quaternion::from_y_rotation(rot.x);
let ry = Quaternion::from_x_rotation(rot.y);
let rot = rx * ry;
//move player based on view
let x = input.axis(Right, Left);
let y = input.axis(Forward, Back);
let move_dir = vec3(x, 0.0, y).normalise().scale(5.0*DELTA);
pos += move_dir.transform(&Mat3::from_rot(rx));
frame.clear_color_and_depth((0.0, 0.0, 0.0, 1.0), 1.0);
//draw teapot
frame.draw(
teapot_mesh, &indices,
&program, &uniform! {
view: view,
model: Mat4::from_scale(Vec3::splat(0.1)),
camera: Mat4::from_inverse_transform(pos, Vec3::ONE, rot),
light: vec3(0.1, 0.25, -1.0).normalise(),
albedo: vec3(0.5, 0.1, 0.4),
ambient: vec3(0.0, 0.05, 0.1),
shine: 10.0f32,
},
&draw_parameters,
).unwrap();
let mut frame = display.draw();
frame.draw(
screen_mesh, &screen_indices, if fxaa_on { &fxaa } else { &normal },
&shaders::fxaa_uniforms(colour), &DrawParameters::default()
).unwrap();
frame.finish().unwrap();
thread::sleep(Duration::from_millis(16));
}).unwrap();
}
sourcepub fn get_binary(&self) -> Result<Binary, GetBinaryError>
pub fn get_binary(&self) -> Result<Binary, GetBinaryError>
Returns the program’s compiled binary.
You can store the result in a file, then reload it later. This avoids having to compile the source code every time.
sourcepub fn get_frag_data_location(&self, name: &str) -> Option<u32>
pub fn get_frag_data_location(&self, name: &str) -> Option<u32>
Returns the location of an output fragment, if it exists.
The location is low-level information that is used internally by glium. You probably don’t need to call this function.
You can declare output fragments in your shaders by writing:
out vec4 foo;
sourcepub fn get_uniform(&self, name: &str) -> Option<&Uniform>
pub fn get_uniform(&self, name: &str) -> Option<&Uniform>
Returns informations about a uniform variable, if it exists.
sourcepub fn uniforms(&self) -> Iter<'_, String, Uniform>
pub fn uniforms(&self) -> Iter<'_, String, Uniform>
Returns an iterator to the list of uniforms.
§Example
for (name, uniform) in program.uniforms() {
println!("Name: {} - Type: {:?}", name, uniform.ty);
}
sourcepub fn get_uniform_blocks(
&self,
) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>>
pub fn get_uniform_blocks( &self, ) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>>
Returns a list of uniform blocks.
§Example
for (name, uniform) in program.get_uniform_blocks() {
println!("Name: {}", name);
}
sourcepub fn get_transform_feedback_buffers(&self) -> &[TransformFeedbackBuffer]
pub fn get_transform_feedback_buffers(&self) -> &[TransformFeedbackBuffer]
Returns the list of transform feedback varyings.
sourcepub fn transform_feedback_matches(
&self,
format: &&'static [(Cow<'static, str>, usize, i32, AttributeType, bool)],
stride: usize,
) -> bool
pub fn transform_feedback_matches( &self, format: &&'static [(Cow<'static, str>, usize, i32, AttributeType, bool)], stride: usize, ) -> bool
True if the transform feedback output of this program matches the specified VertexFormat
and stride
.
The stride
is the number of bytes between two vertices.
sourcepub fn get_output_primitives(&self) -> Option<OutputPrimitives>
pub fn get_output_primitives(&self) -> Option<OutputPrimitives>
Returns the type of geometry that transform feedback would generate, or None
if it
depends on the vertex/index data passed when drawing.
This corresponds to GL_GEOMETRY_OUTPUT_TYPE
or GL_TESS_GEN_MODE
. If the program doesn’t
contain either a geometry shader or a tessellation evaluation shader, returns None
.
sourcepub fn has_tessellation_shaders(&self) -> bool
pub fn has_tessellation_shaders(&self) -> bool
Returns true if the program contains a tessellation stage.
sourcepub fn has_tessellation_control_shader(&self) -> bool
pub fn has_tessellation_control_shader(&self) -> bool
Returns true if the program contains a tessellation control stage.
sourcepub fn has_tessellation_evaluation_shader(&self) -> bool
pub fn has_tessellation_evaluation_shader(&self) -> bool
Returns true if the program contains a tessellation evaluation stage.
sourcepub fn has_geometry_shader(&self) -> bool
pub fn has_geometry_shader(&self) -> bool
Returns true if the program contains a geometry shader.
sourcepub fn get_attribute(&self, name: &str) -> Option<&Attribute>
pub fn get_attribute(&self, name: &str) -> Option<&Attribute>
Returns informations about an attribute, if it exists.
sourcepub fn attributes(&self) -> Iter<'_, String, Attribute>
pub fn attributes(&self) -> Iter<'_, String, Attribute>
Returns an iterator to the list of attributes.
§Example
for (name, attribute) in program.attributes() {
println!("Name: {} - Type: {:?}", name, attribute.ty);
}
sourcepub fn has_srgb_output(&self) -> bool
pub fn has_srgb_output(&self) -> bool
Returns true if the program has been configured to output sRGB instead of RGB.
sourcepub fn get_shader_storage_blocks(
&self,
) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>>
pub fn get_shader_storage_blocks( &self, ) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>>
Returns the list of shader storage blocks.
§Example
for (name, uniform) in program.get_shader_storage_blocks() {
println!("Name: {}", name);
}
sourcepub fn get_atomic_counters(
&self,
) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>>
pub fn get_atomic_counters( &self, ) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>>
Returns the list of shader storage blocks.
§Example
for (name, uniform) in program.get_atomic_counters() {
println!("Name: {}", name);
}
sourcepub fn get_subroutine_uniforms(
&self,
) -> &HashMap<(String, ShaderStage), SubroutineUniform, BuildHasherDefault<FnvHasher>>
pub fn get_subroutine_uniforms( &self, ) -> &HashMap<(String, ShaderStage), SubroutineUniform, BuildHasherDefault<FnvHasher>>
Returns the subroutine uniforms of this program.
Since subroutine uniforms are unique per shader and not per program,
the keys of the HashMap
are in the format ("subroutine_name", ShaderStage)
.
§Example
for (&(ref name, shader), uniform) in program.get_subroutine_uniforms() {
println!("Name: {}", name);
}
sourcepub fn uses_point_size(&self) -> bool
pub fn uses_point_size(&self) -> bool
Returns true if the program has been configured to use the gl_PointSize
variable.
If the program uses gl_PointSize
without having been configured appropriately, then
setting the value of gl_PointSize
will have no effect.
Trait Implementations§
Auto Trait Implementations§
impl !Freeze for Program
impl !RefUnwindSafe for Program
impl !Send for Program
impl !Sync for Program
impl Unpin for Program
impl !UnwindSafe for Program
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.