1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
use super::ServerKey;
use crate::shortint::engine::ShortintEngine;
use crate::shortint::server_key::CheckError;
use crate::shortint::server_key::CheckError::CarryFull;
use crate::shortint::Ciphertext;
impl ServerKey {
/// Computes homomorphically a multiplication of a ciphertext by a scalar.
///
/// The result is returned in a _new_ ciphertext.
///
/// The operation is modulo the the precision bits to the power of two.
///
/// This function does _not_ check whether the capacity of the ciphertext is exceeded.
///
/// # Example
///
/// ```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// let ct = cks.encrypt(1);
///
/// // Compute homomorphically a scalar multiplication:
/// let ct_res = sks.unchecked_scalar_mul(&ct, 3);
///
/// let clear = cks.decrypt(&ct_res);
/// assert_eq!(3, clear);
/// ```
pub fn unchecked_scalar_mul(&self, ct: &Ciphertext, scalar: u8) -> Ciphertext {
ShortintEngine::with_thread_local_mut(|engine| {
engine.unchecked_scalar_mul(ct, scalar).unwrap()
})
}
/// Computes homomorphically a multiplication of a ciphertext by a scalar.
///
/// The result it stored in the given ciphertext.
///
/// The operation is modulo the the precision bits to the power of two.
///
/// This function does not check whether the capacity of the ciphertext is exceeded.
///
/// # Example
///
/// ```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// let mut ct = cks.encrypt(1);
///
/// // Compute homomorphically a scalar multiplication:
/// sks.unchecked_scalar_mul_assign(&mut ct, 3);
///
/// let clear = cks.decrypt(&ct);
/// assert_eq!(3, clear);
/// ```
pub fn unchecked_scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
ShortintEngine::with_thread_local_mut(|engine| {
engine.unchecked_scalar_mul_assign(ct, scalar).unwrap()
})
}
/// Verifies if the ciphertext can be multiplied by a scalar.
///
/// # Example
///
///```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// let ct = cks.encrypt(2);
///
/// // Verification if the scalar multiplication can be computed:
/// let can_be_computed = sks.is_scalar_mul_possible(&ct, 3);
///
/// assert_eq!(can_be_computed, true);
/// ```
pub fn is_scalar_mul_possible(&self, ct: &Ciphertext, scalar: u8) -> bool {
//scalar * ct.counter
let final_degree = scalar as usize * ct.degree.0;
final_degree <= self.max_degree.0
}
/// Computes homomorphically a multiplication of a ciphertext by a scalar.
///
/// If the operation is possible, the result is returned in a _new_ ciphertext.
/// Otherwise [CheckError::CarryFull] is returned.
///
/// The operation is modulo the precision bits to the power of two.
///
///
/// # Example
///
/// ```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// // Encrypt a message:
/// let ct = cks.encrypt(1);
///
/// // Compute homomorphically a scalar multiplication:
/// let ct_res = sks.checked_scalar_mul(&ct, 3);
///
/// assert!(ct_res.is_ok());
///
/// let ct_res = ct_res.unwrap();
/// let clear_res = cks.decrypt(&ct_res);
/// assert_eq!(clear_res, 3);
/// ```
pub fn checked_scalar_mul(
&self,
ct: &Ciphertext,
scalar: u8,
) -> Result<Ciphertext, CheckError> {
//If the ciphertext cannot be multiplied without exceeding the degree max
if self.is_scalar_mul_possible(ct, scalar) {
let ct_result = self.unchecked_scalar_mul(ct, scalar);
Ok(ct_result)
} else {
Err(CarryFull)
}
}
/// Computes homomorphically a multiplication of a ciphertext by a scalar.
///
/// If the operation is possible, the result is stored _in_ the input ciphertext.
/// Otherwise [CheckError::CarryFull] is returned and the ciphertext is not .
///
/// The operation is modulo the precision bits to the power of two.
///
/// # Example
///
/// ```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// // Encrypt a message:
/// let mut ct = cks.encrypt(1);
///
/// // Compute homomorphically a scalar multiplication:
/// let res = sks.checked_scalar_mul_assign(&mut ct, 3);
///
/// assert!(res.is_ok());
///
/// let clear_res = cks.decrypt(&ct);
/// assert_eq!(clear_res, 3);
/// ```
pub fn checked_scalar_mul_assign(
&self,
ct: &mut Ciphertext,
scalar: u8,
) -> Result<(), CheckError> {
if self.is_scalar_mul_possible(ct, scalar) {
self.unchecked_scalar_mul_assign(ct, scalar);
Ok(())
} else {
Err(CarryFull)
}
}
/// Computes homomorphically a multiplication of a ciphertext by a scalar.
///
/// This checks that the multiplication is possible. In the case where the carry buffers are
/// full, then it is automatically cleared to allow the operation.
///
/// # Example
///
/// ```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// let msg = 1_u64;
/// let scalar = 3_u8;
///
/// let mut ct = cks.encrypt(msg);
///
/// // Compute homomorphically a scalar multiplication:
/// let ct_res = sks.smart_scalar_mul(&mut ct, scalar);
///
/// // The input ciphertext content is not changed
/// assert_eq!(cks.decrypt(&ct), msg);
///
/// // Our result is what we expect
/// let clear = cks.decrypt(&ct_res);
/// let modulus = cks.parameters.message_modulus.0 as u64;
/// assert_eq!(3, clear % modulus);
/// ```
pub fn smart_scalar_mul(&self, ct: &mut Ciphertext, scalar: u8) -> Ciphertext {
ShortintEngine::with_thread_local_mut(|engine| {
engine.smart_scalar_mul(self, ct, scalar).unwrap()
})
}
/// Computes homomorphically a multiplication of a ciphertext by a scalar.
///
/// This checks that the multiplication is possible. In the case where the carry buffers are
/// full, then it is automatically cleared to allow the operation.
///
/// # Example
///
/// ```rust
/// use tfhe::shortint::gen_keys;
/// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
///
/// let msg = 1_u64;
/// let scalar = 3_u8;
///
/// let mut ct = cks.encrypt(msg);
///
/// // Compute homomorphically a scalar multiplication:
/// sks.smart_scalar_mul_assign(&mut ct, scalar);
///
/// // Our result is what we expect
/// let clear = cks.decrypt(&ct);
/// assert_eq!(3, clear);
/// ```
pub fn smart_scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
ShortintEngine::with_thread_local_mut(|engine| {
engine.smart_scalar_mul_assign(self, ct, scalar).unwrap()
})
}
}