1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
use super::ServerKey;
use crate::shortint::engine::ShortintEngine;
use crate::shortint::server_key::CheckError;
use crate::shortint::server_key::CheckError::CarryFull;
use crate::shortint::Ciphertext;

impl ServerKey {
    /// Computes homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// The result is returned in a _new_ ciphertext.
    ///
    /// The operation is modulo the the precision bits to the power of two.
    ///
    /// This function does _not_ check whether the capacity of the ciphertext is exceeded.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// let ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.unchecked_scalar_mul(&ct, 3);
    ///
    /// let clear = cks.decrypt(&ct_res);
    /// assert_eq!(3, clear);
    /// ```
    pub fn unchecked_scalar_mul(&self, ct: &Ciphertext, scalar: u8) -> Ciphertext {
        ShortintEngine::with_thread_local_mut(|engine| {
            engine.unchecked_scalar_mul(ct, scalar).unwrap()
        })
    }

    /// Computes homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// The result it stored in the given ciphertext.
    ///
    /// The operation is modulo the the precision bits to the power of two.
    ///
    /// This function does not check whether the capacity of the ciphertext is exceeded.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// let mut ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.unchecked_scalar_mul_assign(&mut ct, 3);
    ///
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(3, clear);
    /// ```
    pub fn unchecked_scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
        ShortintEngine::with_thread_local_mut(|engine| {
            engine.unchecked_scalar_mul_assign(ct, scalar).unwrap()
        })
    }

    /// Verifies if the ciphertext can be multiplied by a scalar.
    ///
    /// # Example
    ///
    ///```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// let ct = cks.encrypt(2);
    ///
    /// // Verification if the scalar multiplication can be computed:
    /// let can_be_computed = sks.is_scalar_mul_possible(&ct, 3);
    ///
    /// assert_eq!(can_be_computed, true);
    /// ```
    pub fn is_scalar_mul_possible(&self, ct: &Ciphertext, scalar: u8) -> bool {
        //scalar * ct.counter
        let final_degree = scalar as usize * ct.degree.0;

        final_degree <= self.max_degree.0
    }

    /// Computes homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// If the operation is possible, the result is returned in a _new_ ciphertext.
    /// Otherwise [CheckError::CarryFull] is returned.
    ///
    /// The operation is modulo the precision bits to the power of two.
    ///
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// // Encrypt a message:
    /// let ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.checked_scalar_mul(&ct, 3);
    ///
    /// assert!(ct_res.is_ok());
    ///
    /// let ct_res = ct_res.unwrap();
    /// let clear_res = cks.decrypt(&ct_res);
    /// assert_eq!(clear_res, 3);
    /// ```
    pub fn checked_scalar_mul(
        &self,
        ct: &Ciphertext,
        scalar: u8,
    ) -> Result<Ciphertext, CheckError> {
        //If the ciphertext cannot be multiplied without exceeding the degree max
        if self.is_scalar_mul_possible(ct, scalar) {
            let ct_result = self.unchecked_scalar_mul(ct, scalar);
            Ok(ct_result)
        } else {
            Err(CarryFull)
        }
    }

    /// Computes homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// If the operation is possible, the result is stored _in_ the input ciphertext.
    /// Otherwise [CheckError::CarryFull] is returned and the ciphertext is not .
    ///
    /// The operation is modulo the precision bits to the power of two.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// // Encrypt a message:
    /// let mut ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let res = sks.checked_scalar_mul_assign(&mut ct, 3);
    ///
    /// assert!(res.is_ok());
    ///
    /// let clear_res = cks.decrypt(&ct);
    /// assert_eq!(clear_res, 3);
    /// ```
    pub fn checked_scalar_mul_assign(
        &self,
        ct: &mut Ciphertext,
        scalar: u8,
    ) -> Result<(), CheckError> {
        if self.is_scalar_mul_possible(ct, scalar) {
            self.unchecked_scalar_mul_assign(ct, scalar);
            Ok(())
        } else {
            Err(CarryFull)
        }
    }

    /// Computes homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// This checks that the multiplication is possible. In the case where the carry buffers are
    /// full, then it is automatically cleared to allow the operation.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// let msg = 1_u64;
    /// let scalar = 3_u8;
    ///
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.smart_scalar_mul(&mut ct, scalar);
    ///
    /// // The input ciphertext content is not changed
    /// assert_eq!(cks.decrypt(&ct), msg);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus.0 as u64;
    /// assert_eq!(3, clear % modulus);
    /// ```
    pub fn smart_scalar_mul(&self, ct: &mut Ciphertext, scalar: u8) -> Ciphertext {
        ShortintEngine::with_thread_local_mut(|engine| {
            engine.smart_scalar_mul(self, ct, scalar).unwrap()
        })
    }

    /// Computes homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// This checks that the multiplication is possible. In the case where the carry buffers are
    /// full, then it is automatically cleared to allow the operation.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
    ///
    /// let msg = 1_u64;
    /// let scalar = 3_u8;
    ///
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.smart_scalar_mul_assign(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(3, clear);
    /// ```
    pub fn smart_scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
        ShortintEngine::with_thread_local_mut(|engine| {
            engine.smart_scalar_mul_assign(self, ct, scalar).unwrap()
        })
    }
}