pub struct Graph {
pub vertices: Vec<Point>,
pub edges: Vec<Edge>,
/* private fields */
}Fields§
§vertices: Vec<Point>§edges: Vec<Edge>Implementations§
Source§impl Graph
impl Graph
Sourcepub fn new(vertices: Vec<Point>, edges: Vec<Edge>) -> Self
pub fn new(vertices: Vec<Point>, edges: Vec<Edge>) -> Self
Examples found in repository?
examples/delaunay_connections.rs (line 65)
11fn main() {
12 println!("=== Delaunay Triangulation Demo ===\n");
13
14 // Step 1: Generate base dungeon with rooms
15 println!("1. Generating Base Dungeon:");
16 let mut grid = Grid::new(40, 30);
17 let bsp = Bsp::default();
18 bsp.generate(&mut grid, 42424);
19
20 let room_count = count_rooms(&grid);
21 println!(
22 " Generated {}x{} dungeon with ~{} rooms",
23 grid.width(),
24 grid.height(),
25 room_count
26 );
27
28 // Step 2: Find room centers
29 println!("\n2. Identifying Room Centers:");
30 let room_centers = find_room_centers(&grid);
31 println!(" Found {} room centers:", room_centers.len());
32 for (i, center) in room_centers.iter().enumerate() {
33 println!(" Room {}: ({:.1}, {:.1})", i + 1, center.x, center.y);
34 }
35
36 // Step 3: Create Delaunay triangulation
37 println!("\n3. Creating Delaunay Triangulation:");
38 let triangulation = DelaunayTriangulation::new(room_centers.clone());
39
40 println!(" Triangulation results:");
41 println!(" Vertices: {}", triangulation.points.len());
42 println!(" Triangles: {}", triangulation.triangles.len());
43 println!(" Edges: {}", triangulation.edges.len());
44
45 // Step 4: Generate minimum spanning tree
46 println!("\n4. Generating Minimum Spanning Tree:");
47 let mst_edges = triangulation.minimum_spanning_tree();
48
49 println!(" MST results:");
50 println!(" Edges: {}", mst_edges.len());
51 println!(
52 " Expected for {} rooms: {}",
53 room_centers.len(),
54 room_centers.len().saturating_sub(1)
55 );
56
57 let total_length: f32 = mst_edges
58 .iter()
59 .map(|edge| edge.length(&triangulation.points))
60 .sum();
61 println!(" Total length: {:.1}", total_length);
62
63 // Step 5: Graph analysis
64 println!("\n5. Graph Analysis:");
65 let graph = Graph::new(triangulation.points.clone(), mst_edges.clone());
66 let analysis = GraphAnalysis::analyze(&graph);
67
68 println!(" Connectivity analysis:");
69 println!(" Connected: {}", analysis.is_connected);
70 println!(" Components: {}", analysis.component_count);
71 println!(" Diameter: {:.1}", analysis.diameter);
72 println!(" Avg clustering: {:.3}", analysis.average_clustering);
73
74 // Step 6: Compare with full triangulation
75 println!("\n6. Comparison: MST vs Full Triangulation:");
76 let full_graph = Graph::new(triangulation.points.clone(), triangulation.edges.clone());
77 let full_analysis = GraphAnalysis::analyze(&full_graph);
78
79 println!(" Full triangulation:");
80 println!(" Edges: {}", full_analysis.edge_count);
81 println!(" Diameter: {:.1}", full_analysis.diameter);
82 println!(
83 " Avg clustering: {:.3}",
84 full_analysis.average_clustering
85 );
86
87 println!(" MST (optimized):");
88 println!(" Edges: {}", analysis.edge_count);
89 println!(" Diameter: {:.1}", analysis.diameter);
90 println!(" Avg clustering: {:.3}", analysis.average_clustering);
91
92 // Step 7: Pathfinding example
93 println!("\n7. Pathfinding Example:");
94 if room_centers.len() >= 2 {
95 let start = 0;
96 let end = room_centers.len() - 1;
97
98 if let Some(path) = graph.shortest_path(start, end) {
99 println!(" Path from room {} to room {}:", start + 1, end + 1);
100 print!(" Route: ");
101 for (i, &room) in path.iter().enumerate() {
102 if i > 0 {
103 print!(" -> ");
104 }
105 print!("Room {}", room + 1);
106 }
107 println!();
108
109 let mut path_length = 0.0;
110 for i in 0..(path.len() - 1) {
111 path_length += room_centers[path[i]].distance_to(&room_centers[path[i + 1]]);
112 }
113 println!(" Total distance: {:.1}", path_length);
114 } else {
115 println!(" No path found between rooms");
116 }
117 }
118
119 // Step 8: Performance analysis
120 println!("\n8. Performance Analysis:");
121 let start = std::time::Instant::now();
122 let _ = DelaunayTriangulation::new(room_centers.clone());
123 println!(" Triangulation time: {:?}", start.elapsed());
124
125 let start = std::time::Instant::now();
126 let _ = triangulation.minimum_spanning_tree();
127 println!(" MST generation time: {:?}", start.elapsed());
128
129 println!("\n✅ Delaunay triangulation demo complete!");
130 println!(" - Natural room connections via triangulation");
131 println!(" - Optimal corridor networks with MST");
132 println!(" - Graph analysis for connectivity insights");
133}More examples
examples/phase4_workflow.rs (line 80)
14fn main() {
15 println!("=== Phase 4 Complete Workflow Demo ===\n");
16
17 // Step 1: Generate base layout with BSP
18 println!("1. Generating Base Layout:");
19 let mut base_grid = Grid::new(35, 25);
20 let bsp = Bsp::default();
21 bsp.generate(&mut base_grid, 12345);
22
23 let base_floors = base_grid.count(|t| t.is_floor());
24 println!(
25 " Generated {}x{} base layout with {} floors",
26 base_grid.width(),
27 base_grid.height(),
28 base_floors
29 );
30
31 // Step 2: Learn patterns from base layout
32 println!("\n2. Learning Patterns from Base Layout:");
33 let learned_patterns = WfcPatternExtractor::extract_patterns(&base_grid, 3);
34 println!(
35 " Extracted {} unique 3x3 patterns",
36 learned_patterns.len()
37 );
38
39 // Step 3: Generate enhanced areas with WFC
40 println!("\n3. Generating Enhanced Areas with Learned Patterns:");
41 let mut wfc_grid = Grid::new(20, 15);
42 let wfc = Wfc::new(WfcConfig {
43 floor_weight: 0.45,
44 pattern_size: 3,
45 enable_backtracking: true,
46 });
47 wfc.generate_with_patterns(&mut wfc_grid, learned_patterns.clone(), 54321);
48
49 let wfc_floors = wfc_grid.count(|t| t.is_floor());
50 println!(
51 " WFC generated {} floors with learned patterns",
52 wfc_floors
53 );
54
55 // Step 4: Find room centers for connectivity analysis
56 println!("\n4. Analyzing Room Connectivity:");
57 let room_centers = find_room_centers(&base_grid);
58 println!(" Identified {} room centers", room_centers.len());
59
60 // Step 5: Create optimal connections with Delaunay + MST
61 println!("\n5. Creating Optimal Room Connections:");
62 if room_centers.len() >= 3 {
63 let triangulation = DelaunayTriangulation::new(room_centers.clone());
64 let mst_edges = triangulation.minimum_spanning_tree();
65
66 println!(" Delaunay triangulation:");
67 println!(" Triangles: {}", triangulation.triangles.len());
68 println!(" All edges: {}", triangulation.edges.len());
69
70 println!(" Minimum spanning tree:");
71 println!(" Optimal edges: {}", mst_edges.len());
72
73 let total_length: f32 = mst_edges
74 .iter()
75 .map(|edge| edge.length(&triangulation.points))
76 .sum();
77 println!(" Total corridor length: {:.1}", total_length);
78
79 // Graph analysis
80 let graph = Graph::new(triangulation.points.clone(), mst_edges);
81 let analysis = GraphAnalysis::analyze(&graph);
82
83 println!(" Connectivity analysis:");
84 println!(" Connected: {}", analysis.is_connected);
85 println!(" Diameter: {:.1}", analysis.diameter);
86 println!(" Clustering: {:.3}", analysis.average_clustering);
87 } else {
88 println!(" Not enough rooms for connectivity analysis");
89 }
90
91 // Step 6: Create specialized prefab library
92 println!("\n6. Creating Specialized Prefab Library:");
93 let library = create_specialized_library();
94
95 println!(
96 " Created library with {} prefabs:",
97 library.get_prefabs().len()
98 );
99 for prefab in library.get_prefabs() {
100 println!(
101 " - {} (weight: {:.1}, tags: {:?})",
102 prefab.name, prefab.weight, prefab.tags
103 );
104 }
105
106 // Step 7: Place special features with advanced prefabs
107 println!("\n7. Placing Special Features:");
108 let mut feature_grid = Grid::new(30, 20);
109
110 // Place boss rooms (rare, large)
111 let boss_config = PrefabConfig {
112 max_prefabs: 1,
113 min_spacing: 8,
114 allow_rotation: false,
115 allow_mirroring: false,
116 weighted_selection: true,
117 placement_mode: terrain_forge::algorithms::PrefabPlacementMode::Overwrite,
118 tags: None,
119 };
120
121 let boss_placer = PrefabPlacer::new(boss_config, library.clone());
122 boss_placer.generate(&mut feature_grid, 98765);
123
124 // Place treasure rooms (medium rarity)
125 let treasure_config = PrefabConfig {
126 max_prefabs: 2,
127 min_spacing: 5,
128 allow_rotation: true,
129 allow_mirroring: true,
130 weighted_selection: true,
131 placement_mode: terrain_forge::algorithms::PrefabPlacementMode::Overwrite,
132 tags: None,
133 };
134
135 let treasure_placer = PrefabPlacer::new(treasure_config, library.clone());
136 treasure_placer.generate(&mut feature_grid, 13579);
137
138 let feature_floors = feature_grid.count(|t| t.is_floor());
139 println!(" Placed special features: {} floor tiles", feature_floors);
140
141 // Step 8: Performance and quality metrics
142 println!("\n8. Performance and Quality Metrics:");
143
144 // WFC performance
145 let start = std::time::Instant::now();
146 let mut perf_grid = Grid::new(25, 20);
147 wfc.generate_with_patterns(&mut perf_grid, learned_patterns.clone(), 24680);
148 let wfc_time = start.elapsed();
149
150 // Prefab performance
151 let start = std::time::Instant::now();
152 let placer = PrefabPlacer::new(PrefabConfig::default(), library.clone());
153 let mut prefab_grid = Grid::new(25, 20);
154 placer.generate(&mut prefab_grid, 24680);
155 let prefab_time = start.elapsed();
156
157 // Delaunay performance
158 let start = std::time::Instant::now();
159 let _ = DelaunayTriangulation::new(room_centers.clone());
160 let delaunay_time = start.elapsed();
161
162 println!(" Performance metrics:");
163 println!(" WFC generation: {:?}", wfc_time);
164 println!(" Prefab placement: {:?}", prefab_time);
165 println!(" Delaunay triangulation: {:?}", delaunay_time);
166
167 // Step 9: Quality comparison
168 println!("\n9. Quality Comparison:");
169
170 // Basic generation
171 let mut basic_grid = Grid::new(25, 20);
172 bsp.generate(&mut basic_grid, 11111);
173 let basic_floors = basic_grid.count(|t| t.is_floor());
174
175 // Enhanced generation (WFC + prefabs)
176 let enhanced_floors = perf_grid.count(|t| t.is_floor()) + prefab_grid.count(|t| t.is_floor());
177
178 println!(" Floor tile comparison:");
179 println!(
180 " Basic BSP: {} floors ({:.1}%)",
181 basic_floors,
182 100.0 * basic_floors as f32 / (25 * 20) as f32
183 );
184 println!(
185 " Enhanced (WFC + Prefabs): {} floors ({:.1}%)",
186 enhanced_floors,
187 100.0 * enhanced_floors as f32 / (50 * 20) as f32
188 );
189
190 // Step 10: Save configuration for reuse
191 println!("\n10. Saving Configuration:");
192 match library.save_to_json("phase4_library.json") {
193 Ok(()) => println!(" ✅ Saved prefab library to phase4_library.json"),
194 Err(e) => println!(" ❌ Failed to save library: {}", e),
195 }
196
197 println!("\n✅ Phase 4 complete workflow finished!");
198 println!(" Workflow summary:");
199 println!(" 1. Generated base layout with BSP algorithm");
200 println!(
201 " 2. Learned {} patterns for WFC enhancement",
202 learned_patterns.len()
203 );
204 println!(
205 " 3. Analyzed {} room connections with Delaunay triangulation",
206 room_centers.len()
207 );
208 println!(" 4. Placed specialized features with weighted prefab selection");
209 println!(" 5. Achieved optimal room connectivity with MST");
210 println!(" 6. Demonstrated pattern learning and constraint propagation");
211 println!(" \n Phase 4 features enable:");
212 println!(" - Intelligent pattern-based generation");
213 println!(" - Mathematically optimal room connections");
214 println!(" - Flexible, reusable prefab systems");
215 println!(" - Advanced graph analysis for level design");
216}pub fn from_delaunay(triangulation: &DelaunayTriangulation) -> Self
pub fn vertex_count(&self) -> usize
pub fn edge_count(&self) -> usize
pub fn neighbors(&self, vertex: usize) -> &[usize]
pub fn is_connected(&self) -> bool
pub fn connected_components(&self) -> Vec<Vec<usize>>
Sourcepub fn shortest_path(&self, start: usize, end: usize) -> Option<Vec<usize>>
pub fn shortest_path(&self, start: usize, end: usize) -> Option<Vec<usize>>
Examples found in repository?
examples/delaunay_connections.rs (line 98)
11fn main() {
12 println!("=== Delaunay Triangulation Demo ===\n");
13
14 // Step 1: Generate base dungeon with rooms
15 println!("1. Generating Base Dungeon:");
16 let mut grid = Grid::new(40, 30);
17 let bsp = Bsp::default();
18 bsp.generate(&mut grid, 42424);
19
20 let room_count = count_rooms(&grid);
21 println!(
22 " Generated {}x{} dungeon with ~{} rooms",
23 grid.width(),
24 grid.height(),
25 room_count
26 );
27
28 // Step 2: Find room centers
29 println!("\n2. Identifying Room Centers:");
30 let room_centers = find_room_centers(&grid);
31 println!(" Found {} room centers:", room_centers.len());
32 for (i, center) in room_centers.iter().enumerate() {
33 println!(" Room {}: ({:.1}, {:.1})", i + 1, center.x, center.y);
34 }
35
36 // Step 3: Create Delaunay triangulation
37 println!("\n3. Creating Delaunay Triangulation:");
38 let triangulation = DelaunayTriangulation::new(room_centers.clone());
39
40 println!(" Triangulation results:");
41 println!(" Vertices: {}", triangulation.points.len());
42 println!(" Triangles: {}", triangulation.triangles.len());
43 println!(" Edges: {}", triangulation.edges.len());
44
45 // Step 4: Generate minimum spanning tree
46 println!("\n4. Generating Minimum Spanning Tree:");
47 let mst_edges = triangulation.minimum_spanning_tree();
48
49 println!(" MST results:");
50 println!(" Edges: {}", mst_edges.len());
51 println!(
52 " Expected for {} rooms: {}",
53 room_centers.len(),
54 room_centers.len().saturating_sub(1)
55 );
56
57 let total_length: f32 = mst_edges
58 .iter()
59 .map(|edge| edge.length(&triangulation.points))
60 .sum();
61 println!(" Total length: {:.1}", total_length);
62
63 // Step 5: Graph analysis
64 println!("\n5. Graph Analysis:");
65 let graph = Graph::new(triangulation.points.clone(), mst_edges.clone());
66 let analysis = GraphAnalysis::analyze(&graph);
67
68 println!(" Connectivity analysis:");
69 println!(" Connected: {}", analysis.is_connected);
70 println!(" Components: {}", analysis.component_count);
71 println!(" Diameter: {:.1}", analysis.diameter);
72 println!(" Avg clustering: {:.3}", analysis.average_clustering);
73
74 // Step 6: Compare with full triangulation
75 println!("\n6. Comparison: MST vs Full Triangulation:");
76 let full_graph = Graph::new(triangulation.points.clone(), triangulation.edges.clone());
77 let full_analysis = GraphAnalysis::analyze(&full_graph);
78
79 println!(" Full triangulation:");
80 println!(" Edges: {}", full_analysis.edge_count);
81 println!(" Diameter: {:.1}", full_analysis.diameter);
82 println!(
83 " Avg clustering: {:.3}",
84 full_analysis.average_clustering
85 );
86
87 println!(" MST (optimized):");
88 println!(" Edges: {}", analysis.edge_count);
89 println!(" Diameter: {:.1}", analysis.diameter);
90 println!(" Avg clustering: {:.3}", analysis.average_clustering);
91
92 // Step 7: Pathfinding example
93 println!("\n7. Pathfinding Example:");
94 if room_centers.len() >= 2 {
95 let start = 0;
96 let end = room_centers.len() - 1;
97
98 if let Some(path) = graph.shortest_path(start, end) {
99 println!(" Path from room {} to room {}:", start + 1, end + 1);
100 print!(" Route: ");
101 for (i, &room) in path.iter().enumerate() {
102 if i > 0 {
103 print!(" -> ");
104 }
105 print!("Room {}", room + 1);
106 }
107 println!();
108
109 let mut path_length = 0.0;
110 for i in 0..(path.len() - 1) {
111 path_length += room_centers[path[i]].distance_to(&room_centers[path[i + 1]]);
112 }
113 println!(" Total distance: {:.1}", path_length);
114 } else {
115 println!(" No path found between rooms");
116 }
117 }
118
119 // Step 8: Performance analysis
120 println!("\n8. Performance Analysis:");
121 let start = std::time::Instant::now();
122 let _ = DelaunayTriangulation::new(room_centers.clone());
123 println!(" Triangulation time: {:?}", start.elapsed());
124
125 let start = std::time::Instant::now();
126 let _ = triangulation.minimum_spanning_tree();
127 println!(" MST generation time: {:?}", start.elapsed());
128
129 println!("\n✅ Delaunay triangulation demo complete!");
130 println!(" - Natural room connections via triangulation");
131 println!(" - Optimal corridor networks with MST");
132 println!(" - Graph analysis for connectivity insights");
133}pub fn minimum_spanning_tree(&self) -> Graph
pub fn clustering_coefficient(&self, vertex: usize) -> f32
pub fn average_clustering_coefficient(&self) -> f32
pub fn diameter(&self) -> f32
Trait Implementations§
Auto Trait Implementations§
impl Freeze for Graph
impl RefUnwindSafe for Graph
impl Send for Graph
impl Sync for Graph
impl Unpin for Graph
impl UnwindSafe for Graph
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more