pub struct Wfc { /* private fields */ }Implementations§
Source§impl Wfc
impl Wfc
Sourcepub fn new(config: WfcConfig) -> Self
pub fn new(config: WfcConfig) -> Self
Examples found in repository?
examples/enhanced_wfc.rs (lines 29-33)
10fn main() {
11 println!("=== Enhanced Wave Function Collapse Demo ===\n");
12
13 // Step 1: Generate example map for pattern learning
14 println!("1. Generating Example Map for Pattern Learning:");
15 let mut example_grid = Grid::new(20, 15);
16 let bsp = Bsp::default();
17 bsp.generate(&mut example_grid, 54321);
18
19 print_grid(&example_grid, "Example Map");
20
21 // Step 2: Extract patterns from example
22 println!("\n2. Extracting Patterns from Example:");
23 let patterns = WfcPatternExtractor::extract_patterns(&example_grid, 3);
24 println!(" Extracted {} unique patterns", patterns.len());
25
26 // Step 3: Generate with learned patterns (no backtracking)
27 println!("\n3. WFC Generation without Backtracking:");
28 let mut grid1 = Grid::new(25, 20);
29 let wfc_no_backtrack = Wfc::new(WfcConfig {
30 floor_weight: 0.4,
31 pattern_size: 3,
32 enable_backtracking: false,
33 });
34 wfc_no_backtrack.generate_with_patterns(&mut grid1, patterns.clone(), 12345);
35 print_grid(&grid1, "Without Backtracking");
36
37 // Step 4: Generate with backtracking enabled
38 println!("\n4. WFC Generation with Backtracking:");
39 let mut grid2 = Grid::new(25, 20);
40 let wfc_backtrack = Wfc::new(WfcConfig {
41 floor_weight: 0.4,
42 pattern_size: 3,
43 enable_backtracking: true,
44 });
45 wfc_backtrack.generate_with_patterns(&mut grid2, patterns.clone(), 12345);
46 print_grid(&grid2, "With Backtracking");
47
48 // Step 5: Compare results
49 println!("\n5. Comparison:");
50 let floors1 = grid1.count(|t| t.is_floor());
51 let floors2 = grid2.count(|t| t.is_floor());
52
53 println!(
54 " Without backtracking: {} floors ({:.1}%)",
55 floors1,
56 100.0 * floors1 as f32 / (grid1.width() * grid1.height()) as f32
57 );
58 println!(
59 " With backtracking: {} floors ({:.1}%)",
60 floors2,
61 100.0 * floors2 as f32 / (grid2.width() * grid2.height()) as f32
62 );
63
64 // Step 6: Different pattern sizes
65 println!("\n6. Pattern Size Comparison:");
66 for size in [2, 3, 4] {
67 let patterns = WfcPatternExtractor::extract_patterns(&example_grid, size);
68 let mut grid = Grid::new(15, 12);
69 let wfc = Wfc::new(WfcConfig {
70 floor_weight: 0.4,
71 pattern_size: size,
72 enable_backtracking: true,
73 });
74 wfc.generate_with_patterns(&mut grid, patterns.clone(), 98765);
75
76 let floors = grid.count(|t| t.is_floor());
77 println!(
78 " Pattern size {}: {} patterns, {} floors",
79 size,
80 patterns.len(),
81 floors
82 );
83 }
84
85 println!("\n✅ Enhanced WFC demo complete!");
86 println!(" - Pattern learning extracts reusable structures");
87 println!(" - Backtracking improves generation success rate");
88 println!(" - Constraint propagation ensures valid outputs");
89}More examples
examples/phase4_workflow.rs (lines 42-46)
14fn main() {
15 println!("=== Phase 4 Complete Workflow Demo ===\n");
16
17 // Step 1: Generate base layout with BSP
18 println!("1. Generating Base Layout:");
19 let mut base_grid = Grid::new(35, 25);
20 let bsp = Bsp::default();
21 bsp.generate(&mut base_grid, 12345);
22
23 let base_floors = base_grid.count(|t| t.is_floor());
24 println!(
25 " Generated {}x{} base layout with {} floors",
26 base_grid.width(),
27 base_grid.height(),
28 base_floors
29 );
30
31 // Step 2: Learn patterns from base layout
32 println!("\n2. Learning Patterns from Base Layout:");
33 let learned_patterns = WfcPatternExtractor::extract_patterns(&base_grid, 3);
34 println!(
35 " Extracted {} unique 3x3 patterns",
36 learned_patterns.len()
37 );
38
39 // Step 3: Generate enhanced areas with WFC
40 println!("\n3. Generating Enhanced Areas with Learned Patterns:");
41 let mut wfc_grid = Grid::new(20, 15);
42 let wfc = Wfc::new(WfcConfig {
43 floor_weight: 0.45,
44 pattern_size: 3,
45 enable_backtracking: true,
46 });
47 wfc.generate_with_patterns(&mut wfc_grid, learned_patterns.clone(), 54321);
48
49 let wfc_floors = wfc_grid.count(|t| t.is_floor());
50 println!(
51 " WFC generated {} floors with learned patterns",
52 wfc_floors
53 );
54
55 // Step 4: Find room centers for connectivity analysis
56 println!("\n4. Analyzing Room Connectivity:");
57 let room_centers = find_room_centers(&base_grid);
58 println!(" Identified {} room centers", room_centers.len());
59
60 // Step 5: Create optimal connections with Delaunay + MST
61 println!("\n5. Creating Optimal Room Connections:");
62 if room_centers.len() >= 3 {
63 let triangulation = DelaunayTriangulation::new(room_centers.clone());
64 let mst_edges = triangulation.minimum_spanning_tree();
65
66 println!(" Delaunay triangulation:");
67 println!(" Triangles: {}", triangulation.triangles.len());
68 println!(" All edges: {}", triangulation.edges.len());
69
70 println!(" Minimum spanning tree:");
71 println!(" Optimal edges: {}", mst_edges.len());
72
73 let total_length: f32 = mst_edges
74 .iter()
75 .map(|edge| edge.length(&triangulation.points))
76 .sum();
77 println!(" Total corridor length: {:.1}", total_length);
78
79 // Graph analysis
80 let graph = Graph::new(triangulation.points.clone(), mst_edges);
81 let analysis = GraphAnalysis::analyze(&graph);
82
83 println!(" Connectivity analysis:");
84 println!(" Connected: {}", analysis.is_connected);
85 println!(" Diameter: {:.1}", analysis.diameter);
86 println!(" Clustering: {:.3}", analysis.average_clustering);
87 } else {
88 println!(" Not enough rooms for connectivity analysis");
89 }
90
91 // Step 6: Create specialized prefab library
92 println!("\n6. Creating Specialized Prefab Library:");
93 let library = create_specialized_library();
94
95 println!(
96 " Created library with {} prefabs:",
97 library.get_prefabs().len()
98 );
99 for prefab in library.get_prefabs() {
100 println!(
101 " - {} (weight: {:.1}, tags: {:?})",
102 prefab.name, prefab.weight, prefab.tags
103 );
104 }
105
106 // Step 7: Place special features with advanced prefabs
107 println!("\n7. Placing Special Features:");
108 let mut feature_grid = Grid::new(30, 20);
109
110 // Place boss rooms (rare, large)
111 let boss_config = PrefabConfig {
112 max_prefabs: 1,
113 min_spacing: 8,
114 allow_rotation: false,
115 allow_mirroring: false,
116 weighted_selection: true,
117 };
118
119 let boss_placer = PrefabPlacer::new(boss_config, library.clone());
120 boss_placer.generate(&mut feature_grid, 98765);
121
122 // Place treasure rooms (medium rarity)
123 let treasure_config = PrefabConfig {
124 max_prefabs: 2,
125 min_spacing: 5,
126 allow_rotation: true,
127 allow_mirroring: true,
128 weighted_selection: true,
129 };
130
131 let treasure_placer = PrefabPlacer::new(treasure_config, library.clone());
132 treasure_placer.generate(&mut feature_grid, 13579);
133
134 let feature_floors = feature_grid.count(|t| t.is_floor());
135 println!(" Placed special features: {} floor tiles", feature_floors);
136
137 // Step 8: Performance and quality metrics
138 println!("\n8. Performance and Quality Metrics:");
139
140 // WFC performance
141 let start = std::time::Instant::now();
142 let mut perf_grid = Grid::new(25, 20);
143 wfc.generate_with_patterns(&mut perf_grid, learned_patterns.clone(), 24680);
144 let wfc_time = start.elapsed();
145
146 // Prefab performance
147 let start = std::time::Instant::now();
148 let placer = PrefabPlacer::new(PrefabConfig::default(), library.clone());
149 let mut prefab_grid = Grid::new(25, 20);
150 placer.generate(&mut prefab_grid, 24680);
151 let prefab_time = start.elapsed();
152
153 // Delaunay performance
154 let start = std::time::Instant::now();
155 let _ = DelaunayTriangulation::new(room_centers.clone());
156 let delaunay_time = start.elapsed();
157
158 println!(" Performance metrics:");
159 println!(" WFC generation: {:?}", wfc_time);
160 println!(" Prefab placement: {:?}", prefab_time);
161 println!(" Delaunay triangulation: {:?}", delaunay_time);
162
163 // Step 9: Quality comparison
164 println!("\n9. Quality Comparison:");
165
166 // Basic generation
167 let mut basic_grid = Grid::new(25, 20);
168 bsp.generate(&mut basic_grid, 11111);
169 let basic_floors = basic_grid.count(|t| t.is_floor());
170
171 // Enhanced generation (WFC + prefabs)
172 let enhanced_floors = perf_grid.count(|t| t.is_floor()) + prefab_grid.count(|t| t.is_floor());
173
174 println!(" Floor tile comparison:");
175 println!(
176 " Basic BSP: {} floors ({:.1}%)",
177 basic_floors,
178 100.0 * basic_floors as f32 / (25 * 20) as f32
179 );
180 println!(
181 " Enhanced (WFC + Prefabs): {} floors ({:.1}%)",
182 enhanced_floors,
183 100.0 * enhanced_floors as f32 / (50 * 20) as f32
184 );
185
186 // Step 10: Save configuration for reuse
187 println!("\n10. Saving Configuration:");
188 match library.save_to_json("phase4_library.json") {
189 Ok(()) => println!(" ✅ Saved prefab library to phase4_library.json"),
190 Err(e) => println!(" ❌ Failed to save library: {}", e),
191 }
192
193 println!("\n✅ Phase 4 complete workflow finished!");
194 println!(" Workflow summary:");
195 println!(" 1. Generated base layout with BSP algorithm");
196 println!(
197 " 2. Learned {} patterns for WFC enhancement",
198 learned_patterns.len()
199 );
200 println!(
201 " 3. Analyzed {} room connections with Delaunay triangulation",
202 room_centers.len()
203 );
204 println!(" 4. Placed specialized features with weighted prefab selection");
205 println!(" 5. Achieved optimal room connectivity with MST");
206 println!(" 6. Demonstrated pattern learning and constraint propagation");
207 println!(" \n Phase 4 features enable:");
208 println!(" - Intelligent pattern-based generation");
209 println!(" - Mathematically optimal room connections");
210 println!(" - Flexible, reusable prefab systems");
211 println!(" - Advanced graph analysis for level design");
212}Sourcepub fn generate_with_patterns(
&self,
grid: &mut Grid<Tile>,
patterns: Vec<Pattern>,
seed: u64,
)
pub fn generate_with_patterns( &self, grid: &mut Grid<Tile>, patterns: Vec<Pattern>, seed: u64, )
Examples found in repository?
examples/enhanced_wfc.rs (line 34)
10fn main() {
11 println!("=== Enhanced Wave Function Collapse Demo ===\n");
12
13 // Step 1: Generate example map for pattern learning
14 println!("1. Generating Example Map for Pattern Learning:");
15 let mut example_grid = Grid::new(20, 15);
16 let bsp = Bsp::default();
17 bsp.generate(&mut example_grid, 54321);
18
19 print_grid(&example_grid, "Example Map");
20
21 // Step 2: Extract patterns from example
22 println!("\n2. Extracting Patterns from Example:");
23 let patterns = WfcPatternExtractor::extract_patterns(&example_grid, 3);
24 println!(" Extracted {} unique patterns", patterns.len());
25
26 // Step 3: Generate with learned patterns (no backtracking)
27 println!("\n3. WFC Generation without Backtracking:");
28 let mut grid1 = Grid::new(25, 20);
29 let wfc_no_backtrack = Wfc::new(WfcConfig {
30 floor_weight: 0.4,
31 pattern_size: 3,
32 enable_backtracking: false,
33 });
34 wfc_no_backtrack.generate_with_patterns(&mut grid1, patterns.clone(), 12345);
35 print_grid(&grid1, "Without Backtracking");
36
37 // Step 4: Generate with backtracking enabled
38 println!("\n4. WFC Generation with Backtracking:");
39 let mut grid2 = Grid::new(25, 20);
40 let wfc_backtrack = Wfc::new(WfcConfig {
41 floor_weight: 0.4,
42 pattern_size: 3,
43 enable_backtracking: true,
44 });
45 wfc_backtrack.generate_with_patterns(&mut grid2, patterns.clone(), 12345);
46 print_grid(&grid2, "With Backtracking");
47
48 // Step 5: Compare results
49 println!("\n5. Comparison:");
50 let floors1 = grid1.count(|t| t.is_floor());
51 let floors2 = grid2.count(|t| t.is_floor());
52
53 println!(
54 " Without backtracking: {} floors ({:.1}%)",
55 floors1,
56 100.0 * floors1 as f32 / (grid1.width() * grid1.height()) as f32
57 );
58 println!(
59 " With backtracking: {} floors ({:.1}%)",
60 floors2,
61 100.0 * floors2 as f32 / (grid2.width() * grid2.height()) as f32
62 );
63
64 // Step 6: Different pattern sizes
65 println!("\n6. Pattern Size Comparison:");
66 for size in [2, 3, 4] {
67 let patterns = WfcPatternExtractor::extract_patterns(&example_grid, size);
68 let mut grid = Grid::new(15, 12);
69 let wfc = Wfc::new(WfcConfig {
70 floor_weight: 0.4,
71 pattern_size: size,
72 enable_backtracking: true,
73 });
74 wfc.generate_with_patterns(&mut grid, patterns.clone(), 98765);
75
76 let floors = grid.count(|t| t.is_floor());
77 println!(
78 " Pattern size {}: {} patterns, {} floors",
79 size,
80 patterns.len(),
81 floors
82 );
83 }
84
85 println!("\n✅ Enhanced WFC demo complete!");
86 println!(" - Pattern learning extracts reusable structures");
87 println!(" - Backtracking improves generation success rate");
88 println!(" - Constraint propagation ensures valid outputs");
89}More examples
examples/phase4_workflow.rs (line 47)
14fn main() {
15 println!("=== Phase 4 Complete Workflow Demo ===\n");
16
17 // Step 1: Generate base layout with BSP
18 println!("1. Generating Base Layout:");
19 let mut base_grid = Grid::new(35, 25);
20 let bsp = Bsp::default();
21 bsp.generate(&mut base_grid, 12345);
22
23 let base_floors = base_grid.count(|t| t.is_floor());
24 println!(
25 " Generated {}x{} base layout with {} floors",
26 base_grid.width(),
27 base_grid.height(),
28 base_floors
29 );
30
31 // Step 2: Learn patterns from base layout
32 println!("\n2. Learning Patterns from Base Layout:");
33 let learned_patterns = WfcPatternExtractor::extract_patterns(&base_grid, 3);
34 println!(
35 " Extracted {} unique 3x3 patterns",
36 learned_patterns.len()
37 );
38
39 // Step 3: Generate enhanced areas with WFC
40 println!("\n3. Generating Enhanced Areas with Learned Patterns:");
41 let mut wfc_grid = Grid::new(20, 15);
42 let wfc = Wfc::new(WfcConfig {
43 floor_weight: 0.45,
44 pattern_size: 3,
45 enable_backtracking: true,
46 });
47 wfc.generate_with_patterns(&mut wfc_grid, learned_patterns.clone(), 54321);
48
49 let wfc_floors = wfc_grid.count(|t| t.is_floor());
50 println!(
51 " WFC generated {} floors with learned patterns",
52 wfc_floors
53 );
54
55 // Step 4: Find room centers for connectivity analysis
56 println!("\n4. Analyzing Room Connectivity:");
57 let room_centers = find_room_centers(&base_grid);
58 println!(" Identified {} room centers", room_centers.len());
59
60 // Step 5: Create optimal connections with Delaunay + MST
61 println!("\n5. Creating Optimal Room Connections:");
62 if room_centers.len() >= 3 {
63 let triangulation = DelaunayTriangulation::new(room_centers.clone());
64 let mst_edges = triangulation.minimum_spanning_tree();
65
66 println!(" Delaunay triangulation:");
67 println!(" Triangles: {}", triangulation.triangles.len());
68 println!(" All edges: {}", triangulation.edges.len());
69
70 println!(" Minimum spanning tree:");
71 println!(" Optimal edges: {}", mst_edges.len());
72
73 let total_length: f32 = mst_edges
74 .iter()
75 .map(|edge| edge.length(&triangulation.points))
76 .sum();
77 println!(" Total corridor length: {:.1}", total_length);
78
79 // Graph analysis
80 let graph = Graph::new(triangulation.points.clone(), mst_edges);
81 let analysis = GraphAnalysis::analyze(&graph);
82
83 println!(" Connectivity analysis:");
84 println!(" Connected: {}", analysis.is_connected);
85 println!(" Diameter: {:.1}", analysis.diameter);
86 println!(" Clustering: {:.3}", analysis.average_clustering);
87 } else {
88 println!(" Not enough rooms for connectivity analysis");
89 }
90
91 // Step 6: Create specialized prefab library
92 println!("\n6. Creating Specialized Prefab Library:");
93 let library = create_specialized_library();
94
95 println!(
96 " Created library with {} prefabs:",
97 library.get_prefabs().len()
98 );
99 for prefab in library.get_prefabs() {
100 println!(
101 " - {} (weight: {:.1}, tags: {:?})",
102 prefab.name, prefab.weight, prefab.tags
103 );
104 }
105
106 // Step 7: Place special features with advanced prefabs
107 println!("\n7. Placing Special Features:");
108 let mut feature_grid = Grid::new(30, 20);
109
110 // Place boss rooms (rare, large)
111 let boss_config = PrefabConfig {
112 max_prefabs: 1,
113 min_spacing: 8,
114 allow_rotation: false,
115 allow_mirroring: false,
116 weighted_selection: true,
117 };
118
119 let boss_placer = PrefabPlacer::new(boss_config, library.clone());
120 boss_placer.generate(&mut feature_grid, 98765);
121
122 // Place treasure rooms (medium rarity)
123 let treasure_config = PrefabConfig {
124 max_prefabs: 2,
125 min_spacing: 5,
126 allow_rotation: true,
127 allow_mirroring: true,
128 weighted_selection: true,
129 };
130
131 let treasure_placer = PrefabPlacer::new(treasure_config, library.clone());
132 treasure_placer.generate(&mut feature_grid, 13579);
133
134 let feature_floors = feature_grid.count(|t| t.is_floor());
135 println!(" Placed special features: {} floor tiles", feature_floors);
136
137 // Step 8: Performance and quality metrics
138 println!("\n8. Performance and Quality Metrics:");
139
140 // WFC performance
141 let start = std::time::Instant::now();
142 let mut perf_grid = Grid::new(25, 20);
143 wfc.generate_with_patterns(&mut perf_grid, learned_patterns.clone(), 24680);
144 let wfc_time = start.elapsed();
145
146 // Prefab performance
147 let start = std::time::Instant::now();
148 let placer = PrefabPlacer::new(PrefabConfig::default(), library.clone());
149 let mut prefab_grid = Grid::new(25, 20);
150 placer.generate(&mut prefab_grid, 24680);
151 let prefab_time = start.elapsed();
152
153 // Delaunay performance
154 let start = std::time::Instant::now();
155 let _ = DelaunayTriangulation::new(room_centers.clone());
156 let delaunay_time = start.elapsed();
157
158 println!(" Performance metrics:");
159 println!(" WFC generation: {:?}", wfc_time);
160 println!(" Prefab placement: {:?}", prefab_time);
161 println!(" Delaunay triangulation: {:?}", delaunay_time);
162
163 // Step 9: Quality comparison
164 println!("\n9. Quality Comparison:");
165
166 // Basic generation
167 let mut basic_grid = Grid::new(25, 20);
168 bsp.generate(&mut basic_grid, 11111);
169 let basic_floors = basic_grid.count(|t| t.is_floor());
170
171 // Enhanced generation (WFC + prefabs)
172 let enhanced_floors = perf_grid.count(|t| t.is_floor()) + prefab_grid.count(|t| t.is_floor());
173
174 println!(" Floor tile comparison:");
175 println!(
176 " Basic BSP: {} floors ({:.1}%)",
177 basic_floors,
178 100.0 * basic_floors as f32 / (25 * 20) as f32
179 );
180 println!(
181 " Enhanced (WFC + Prefabs): {} floors ({:.1}%)",
182 enhanced_floors,
183 100.0 * enhanced_floors as f32 / (50 * 20) as f32
184 );
185
186 // Step 10: Save configuration for reuse
187 println!("\n10. Saving Configuration:");
188 match library.save_to_json("phase4_library.json") {
189 Ok(()) => println!(" ✅ Saved prefab library to phase4_library.json"),
190 Err(e) => println!(" ❌ Failed to save library: {}", e),
191 }
192
193 println!("\n✅ Phase 4 complete workflow finished!");
194 println!(" Workflow summary:");
195 println!(" 1. Generated base layout with BSP algorithm");
196 println!(
197 " 2. Learned {} patterns for WFC enhancement",
198 learned_patterns.len()
199 );
200 println!(
201 " 3. Analyzed {} room connections with Delaunay triangulation",
202 room_centers.len()
203 );
204 println!(" 4. Placed specialized features with weighted prefab selection");
205 println!(" 5. Achieved optimal room connectivity with MST");
206 println!(" 6. Demonstrated pattern learning and constraint propagation");
207 println!(" \n Phase 4 features enable:");
208 println!(" - Intelligent pattern-based generation");
209 println!(" - Mathematically optimal room connections");
210 println!(" - Flexible, reusable prefab systems");
211 println!(" - Advanced graph analysis for level design");
212}Trait Implementations§
Auto Trait Implementations§
impl Freeze for Wfc
impl RefUnwindSafe for Wfc
impl Send for Wfc
impl Sync for Wfc
impl Unpin for Wfc
impl UnwindSafe for Wfc
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more