Trait tea_rolling::RollingValidRegBinary
source · pub trait RollingValidRegBinary<T: IsNone>: Vec1View<T> {
// Provided methods
fn ts_vregx_alpha_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_alpha<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_beta_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_beta<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_resid_mean_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_resid_mean<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_resid_std_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_resid_std<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_resid_skew_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_resid_skew<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
fn ts_vregx_all<O: Vec1<(U, U, U)>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
where T::Inner: Number,
T2::Inner: Number,
f64: Cast<U> { ... }
}Expand description
Trait for rolling window regression operations on valid (non-None) elements with two input vectors.
Provided Methods§
sourcefn ts_vregx_alpha_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
fn ts_vregx_alpha_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, out: Option<O::UninitRefMut<'_>>, ) -> Option<O>
Calculates the rolling regression alpha (intercept) for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling regression alpha values.
sourcefn ts_vregx_alpha<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
fn ts_vregx_alpha<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, ) -> O
Calculates the rolling regression alpha (intercept) for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling regression alpha values.
sourcefn ts_vregx_beta_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
fn ts_vregx_beta_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, out: Option<O::UninitRefMut<'_>>, ) -> Option<O>
Calculates the rolling regression beta (slope) for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling regression beta values.
sourcefn ts_vregx_beta<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
fn ts_vregx_beta<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, ) -> O
Calculates the rolling regression beta (slope) for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling regression beta values.
sourcefn ts_vregx_resid_mean_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
fn ts_vregx_resid_mean_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, out: Option<O::UninitRefMut<'_>>, ) -> Option<O>
Calculates the rolling mean of regression residuals for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling mean of regression residuals.
sourcefn ts_vregx_resid_mean<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
fn ts_vregx_resid_mean<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, ) -> O
Calculates the rolling mean of regression residuals for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling mean of regression residuals.
sourcefn ts_vregx_resid_std_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
fn ts_vregx_resid_std_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, out: Option<O::UninitRefMut<'_>>, ) -> Option<O>
Calculates the rolling standard deviation of regression residuals for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling standard deviation of regression residuals.
sourcefn ts_vregx_resid_std<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
fn ts_vregx_resid_std<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, ) -> O
Calculates the rolling standard deviation of regression residuals for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling standard deviation of regression residuals.
sourcefn ts_vregx_resid_skew_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> Option<O>
fn ts_vregx_resid_skew_to<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, out: Option<O::UninitRefMut<'_>>, ) -> Option<O>
Calculates the rolling skewness of regression residuals for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling skewness of regression residuals.
sourcefn ts_vregx_resid_skew<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
fn ts_vregx_resid_skew<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, ) -> O
Calculates the rolling skewness of regression residuals for valid elements within a window.
§Arguments
other- The second input vector for the regression.window- The size of the rolling window.min_periods- The minimum number of observations in window required to have a value.out- Optional output buffer to store the results.
§Returns
A vector containing the rolling skewness of regression residuals.
sourcefn ts_vregx_all<O: Vec1<(U, U, U)>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
) -> O
fn ts_vregx_all<O: Vec1<(U, U, U)>, U, V2: Vec1View<T2>, T2: IsNone>( &self, other: &V2, window: usize, min_periods: Option<usize>, ) -> O
Calculates rolling regression statistics for two vectors.
This function computes rolling regression statistics (alpha, beta, and sum of squared errors) for two input vectors over a specified window size.
§Arguments
other- The second input vector for regression.window- The size of the rolling window.min_periods- The minimum number of observations required to have a value; defaults towindow / 2.
§Type Parameters
O- The output vector type, must implementVec1<(U, U, U)>.U- The type of the output elements.V2- The type of the second input vector, must implementVec1View<T2>.T2- The element type of the second input vector, must implementIsNone.
§Returns
Returns a vector of tuples (alpha, beta, sse) where:
alphais the y-intercept of the regression line.betais the slope of the regression line.sseis the sum of squared errors.
§Notes
- The function uses a rolling window approach to calculate regression statistics.
- NaN values are returned for windows with insufficient observations.
- The calculation assumes that
T::InnerandT2::InnerimplementNumber. - The output type
Umust be able to be cast fromf64.