pub struct GibbsSampler { /* private fields */ }Expand description
Gibbs sampler for Student’s t prior inference.
Implementations§
Source§impl GibbsSampler
impl GibbsSampler
Sourcepub fn new(l_r: &Matrix9, sigma: f64, seed: u64) -> Self
pub fn new(l_r: &Matrix9, sigma: f64, seed: u64) -> Self
Create a new Gibbs sampler with precomputed factorizations.
§Arguments
l_r- Cholesky factor of R (correlation matrix)sigma- Calibrated prior scaleseed- Deterministic RNG seed
Sourcepub fn run(
&mut self,
delta_obs: &Vector9,
sigma_n: &Matrix9,
theta: f64,
) -> GibbsResult
pub fn run( &mut self, delta_obs: &Vector9, sigma_n: &Matrix9, theta: f64, ) -> GibbsResult
Run Gibbs sampler and return posterior summaries.
§Arguments
delta_obs- Observed quantile differences Δsigma_n- Likelihood covariance Σ_ntheta- Effect threshold for leak probability
v5.6: Extended to sample (δ, λ, κ) for robust t-likelihood.
Auto Trait Implementations§
impl Freeze for GibbsSampler
impl RefUnwindSafe for GibbsSampler
impl Send for GibbsSampler
impl Sync for GibbsSampler
impl Unpin for GibbsSampler
impl UnwindSafe for GibbsSampler
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.