swiftide_indexing/transformers/
sparse_embed.rs1use std::{collections::VecDeque, sync::Arc};
3
4use anyhow::bail;
5use async_trait::async_trait;
6use swiftide_core::{
7 indexing::{IndexingStream, Node},
8 BatchableTransformer, SparseEmbeddingModel, WithBatchIndexingDefaults, WithIndexingDefaults,
9};
10
11#[derive(Clone)]
16pub struct SparseEmbed {
17 embed_model: Arc<dyn SparseEmbeddingModel>,
18 concurrency: Option<usize>,
19 batch_size: Option<usize>,
20}
21
22impl std::fmt::Debug for SparseEmbed {
23 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
24 f.debug_struct("SparseEmbed")
25 .field("concurrency", &self.concurrency)
26 .finish()
27 }
28}
29
30impl SparseEmbed {
31 pub fn new(model: impl SparseEmbeddingModel + 'static) -> Self {
41 Self {
42 embed_model: Arc::new(model),
43 concurrency: None,
44 batch_size: None,
45 }
46 }
47
48 #[must_use]
49 pub fn with_concurrency(mut self, concurrency: usize) -> Self {
50 self.concurrency = Some(concurrency);
51 self
52 }
53
54 #[must_use]
64 pub fn with_batch_size(mut self, batch_size: usize) -> Self {
65 self.batch_size = Some(batch_size);
66 self
67 }
68}
69
70impl WithBatchIndexingDefaults for SparseEmbed {}
71impl WithIndexingDefaults for SparseEmbed {}
72
73#[async_trait]
74impl BatchableTransformer for SparseEmbed {
75 #[tracing::instrument(skip_all, name = "transformers.embed")]
89 async fn batch_transform(&self, mut nodes: Vec<Node>) -> IndexingStream {
90 let mut embeddings_keys_groups = VecDeque::with_capacity(nodes.len());
94 let embeddables_data = nodes
96 .iter_mut()
97 .fold(Vec::new(), |mut embeddables_data, node| {
98 let embeddables = node.as_embeddables();
99 let mut embeddables_keys = Vec::with_capacity(embeddables.len());
100 for (embeddable_key, embeddable_data) in embeddables {
101 embeddables_keys.push(embeddable_key);
102 embeddables_data.push(embeddable_data);
103 }
104 embeddings_keys_groups.push_back(embeddables_keys);
105 embeddables_data
106 });
107
108 let mut embeddings = match self.embed_model.sparse_embed(embeddables_data).await {
110 Ok(embeddngs) => VecDeque::from(embeddngs),
111 Err(err) => return err.into(),
112 };
113
114 let nodes_iter = nodes.into_iter().map(move |mut node| {
116 let Some(embedding_keys) = embeddings_keys_groups.pop_front() else {
117 bail!("Missing embedding data");
118 };
119 node.sparse_vectors = embedding_keys
120 .into_iter()
121 .map(|embedded_field| {
122 embeddings
123 .pop_front()
124 .map(|embedding| (embedded_field, embedding))
125 })
126 .collect();
127 Ok(node)
128 });
129
130 IndexingStream::iter(nodes_iter)
131 }
132
133 fn concurrency(&self) -> Option<usize> {
134 self.concurrency
135 }
136
137 fn batch_size(&self) -> Option<usize> {
138 self.batch_size
139 }
140}
141
142#[cfg(test)]
143mod tests {
144 use swiftide_core::indexing::{EmbedMode, EmbeddedField, Metadata, Node};
145 use swiftide_core::{
146 BatchableTransformer, MockSparseEmbeddingModel, SparseEmbedding, SparseEmbeddings,
147 };
148
149 use super::SparseEmbed;
150
151 use futures_util::StreamExt;
152 use mockall::predicate::*;
153 use test_case::test_case;
154
155 #[derive(Clone)]
156 struct TestData<'a> {
157 pub embed_mode: EmbedMode,
158 pub chunk: &'a str,
159 pub metadata: Metadata,
160 pub expected_embedables: Vec<&'a str>,
161 pub expected_vectors: Vec<(EmbeddedField, Vec<f32>)>,
162 }
163
164 #[test_case(vec![
165 TestData {
166 embed_mode: EmbedMode::SingleWithMetadata,
167 chunk: "chunk_1",
168 metadata: Metadata::from([("meta_1", "prompt_1")]),
169 expected_embedables: vec!["meta_1: prompt_1\nchunk_1"],
170 expected_vectors: vec![(EmbeddedField::Combined, vec![1f32])]
171 },
172 TestData {
173 embed_mode: EmbedMode::SingleWithMetadata,
174 chunk: "chunk_2",
175 metadata: Metadata::from([("meta_2", "prompt_2")]),
176 expected_embedables: vec!["meta_2: prompt_2\nchunk_2"],
177 expected_vectors: vec![(EmbeddedField::Combined, vec![2f32])]
178 }
179 ]; "Multiple nodes EmbedMode::SingleWithMetadata with metadata.")]
180 #[test_case(vec![
181 TestData {
182 embed_mode: EmbedMode::PerField,
183 chunk: "chunk_1",
184 metadata: Metadata::from([("meta_1", "prompt 1")]),
185 expected_embedables: vec!["chunk_1", "prompt 1"],
186 expected_vectors: vec![
187 (EmbeddedField::Chunk, vec![10f32]),
188 (EmbeddedField::Metadata("meta_1".into()), vec![11f32])
189 ]
190 },
191 TestData {
192 embed_mode: EmbedMode::PerField,
193 chunk: "chunk_2",
194 metadata: Metadata::from([("meta_2", "prompt 2")]),
195 expected_embedables: vec!["chunk_2", "prompt 2"],
196 expected_vectors: vec![
197 (EmbeddedField::Chunk, vec![20f32]),
198 (EmbeddedField::Metadata("meta_2".into()), vec![21f32])
199 ]
200 }
201 ]; "Multiple nodes EmbedMode::PerField with metadata.")]
202 #[test_case(vec![
203 TestData {
204 embed_mode: EmbedMode::Both,
205 chunk: "chunk_1",
206 metadata: Metadata::from([("meta_1", "prompt 1")]),
207 expected_embedables: vec!["meta_1: prompt 1\nchunk_1", "chunk_1", "prompt 1"],
208 expected_vectors: vec![
209 (EmbeddedField::Combined, vec![10f32]),
210 (EmbeddedField::Chunk, vec![11f32]),
211 (EmbeddedField::Metadata("meta_1".into()), vec![12f32])
212 ]
213 },
214 TestData {
215 embed_mode: EmbedMode::Both,
216 chunk: "chunk_2",
217 metadata: Metadata::from([("meta_2", "prompt 2")]),
218 expected_embedables: vec!["meta_2: prompt 2\nchunk_2", "chunk_2", "prompt 2"],
219 expected_vectors: vec![
220 (EmbeddedField::Combined, vec![20f32]),
221 (EmbeddedField::Chunk, vec![21f32]),
222 (EmbeddedField::Metadata("meta_2".into()), vec![22f32])
223 ]
224 }
225 ]; "Multiple nodes EmbedMode::Both with metadata.")]
226 #[test_case(vec![
227 TestData {
228 embed_mode: EmbedMode::Both,
229 chunk: "chunk_1",
230 metadata: Metadata::from([("meta_10", "prompt 10"), ("meta_11", "prompt 11"), ("meta_12", "prompt 12")]),
231 expected_embedables: vec!["meta_10: prompt 10\nmeta_11: prompt 11\nmeta_12: prompt 12\nchunk_1", "chunk_1", "prompt 10", "prompt 11", "prompt 12"],
232 expected_vectors: vec![
233 (EmbeddedField::Combined, vec![10f32]),
234 (EmbeddedField::Chunk, vec![11f32]),
235 (EmbeddedField::Metadata("meta_10".into()), vec![12f32]),
236 (EmbeddedField::Metadata("meta_11".into()), vec![13f32]),
237 (EmbeddedField::Metadata("meta_12".into()), vec![14f32]),
238 ]
239 },
240 TestData {
241 embed_mode: EmbedMode::Both,
242 chunk: "chunk_2",
243 metadata: Metadata::from([("meta_20", "prompt 20"), ("meta_21", "prompt 21"), ("meta_22", "prompt 22")]),
244 expected_embedables: vec!["meta_20: prompt 20\nmeta_21: prompt 21\nmeta_22: prompt 22\nchunk_2", "chunk_2", "prompt 20", "prompt 21", "prompt 22"],
245 expected_vectors: vec![
246 (EmbeddedField::Combined, vec![20f32]),
247 (EmbeddedField::Chunk, vec![21f32]),
248 (EmbeddedField::Metadata("meta_20".into()), vec![22f32]),
249 (EmbeddedField::Metadata("meta_21".into()), vec![23f32]),
250 (EmbeddedField::Metadata("meta_22".into()), vec![24f32])
251 ]
252 }
253 ]; "Multiple nodes EmbedMode::Both with multiple metadata.")]
254 #[test_case(vec![]; "No ingestion nodes")]
255 #[tokio::test]
256 async fn batch_transform(test_data: Vec<TestData<'_>>) {
257 let test_nodes: Vec<Node> = test_data
258 .iter()
259 .map(|data| {
260 Node::builder()
261 .chunk(data.chunk)
262 .metadata(data.metadata.clone())
263 .embed_mode(data.embed_mode)
264 .build()
265 .unwrap()
266 })
267 .collect();
268
269 let expected_nodes: Vec<Node> = test_nodes
270 .clone()
271 .into_iter()
272 .zip(test_data.iter())
273 .map(|(mut expected_node, test_data)| {
274 expected_node.sparse_vectors = Some(
275 test_data
276 .expected_vectors
277 .iter()
278 .cloned()
279 .map(|d| {
280 (
281 d.0,
282 SparseEmbedding {
283 indices: vec![0],
284 values: d.1,
285 },
286 )
287 })
288 .collect(),
289 );
290 expected_node
291 })
292 .collect();
293
294 let expected_embeddables_batch = test_data
295 .clone()
296 .iter()
297 .flat_map(|d| &d.expected_embedables)
298 .map(ToString::to_string)
299 .collect::<Vec<String>>();
300
301 let expected_vectors_batch: SparseEmbeddings = test_data
302 .clone()
303 .iter()
304 .flat_map(|d| {
305 d.expected_vectors
306 .iter()
307 .map(|(_, v)| v)
308 .cloned()
309 .map(|v| SparseEmbedding {
310 indices: vec![0],
311 values: v,
312 })
313 })
314 .collect();
315
316 let mut model_mock = MockSparseEmbeddingModel::new();
317 model_mock
318 .expect_sparse_embed()
319 .withf(move |embeddables| expected_embeddables_batch.eq(embeddables))
320 .times(1)
321 .returning_st(move |_| Ok(expected_vectors_batch.clone()));
322
323 let embed = SparseEmbed::new(model_mock);
324
325 let mut stream = embed.batch_transform(test_nodes).await;
326
327 for expected_node in expected_nodes {
328 let ingested_node = stream
329 .next()
330 .await
331 .expect("IngestionStream has same length as expected_nodes")
332 .expect("Is OK");
333
334 debug_assert_eq!(ingested_node, expected_node);
335 }
336 }
337
338 #[tokio::test]
339 async fn test_returns_error_properly_if_sparse_embed_fails() {
340 let test_nodes = vec![Node::new("chunk")];
341 let mut model_mock = MockSparseEmbeddingModel::new();
342 model_mock
343 .expect_sparse_embed()
344 .times(1)
345 .returning(|_| Err(anyhow::anyhow!("error")));
346 let embed = SparseEmbed::new(model_mock);
347 let mut stream = embed.batch_transform(test_nodes).await;
348 let error = stream
349 .next()
350 .await
351 .expect("IngestionStream has same length as expected_nodes")
352 .expect_err("Is Err");
353
354 assert_eq!(error.to_string(), "error");
355 }
356}