swiftide_indexing/transformers/
sparse_embed.rs

1//! Generic embedding transformer
2use std::{collections::VecDeque, sync::Arc};
3
4use anyhow::bail;
5use async_trait::async_trait;
6use swiftide_core::{
7    indexing::{IndexingStream, Node},
8    BatchableTransformer, SparseEmbeddingModel, WithBatchIndexingDefaults, WithIndexingDefaults,
9};
10
11/// A transformer that can generate embeddings for an `Node`
12///
13/// This file defines the `SparseEmbed` struct and its implementation of the `BatchableTransformer`
14/// trait.
15#[derive(Clone)]
16pub struct SparseEmbed {
17    embed_model: Arc<dyn SparseEmbeddingModel>,
18    concurrency: Option<usize>,
19    batch_size: Option<usize>,
20}
21
22impl std::fmt::Debug for SparseEmbed {
23    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
24        f.debug_struct("SparseEmbed")
25            .field("concurrency", &self.concurrency)
26            .finish()
27    }
28}
29
30impl SparseEmbed {
31    /// Creates a new instance of the `SparseEmbed` transformer.
32    ///
33    /// # Parameters
34    ///
35    /// * `model` - An embedding model that implements the `SparseEmbeddingModel` trait.
36    ///
37    /// # Returns
38    ///
39    /// A new instance of `SparseEmbed`.
40    pub fn new(model: impl SparseEmbeddingModel + 'static) -> Self {
41        Self {
42            embed_model: Arc::new(model),
43            concurrency: None,
44            batch_size: None,
45        }
46    }
47
48    #[must_use]
49    pub fn with_concurrency(mut self, concurrency: usize) -> Self {
50        self.concurrency = Some(concurrency);
51        self
52    }
53
54    /// Sets the batch size for the transformer.
55    /// If the batch size is not set, the transformer will use the default batch size set by the
56    /// pipeline # Parameters
57    ///
58    /// * `batch_size` - The batch size to use for the transformer.
59    ///
60    /// # Returns
61    ///
62    /// A new instance of `Embed`.
63    #[must_use]
64    pub fn with_batch_size(mut self, batch_size: usize) -> Self {
65        self.batch_size = Some(batch_size);
66        self
67    }
68}
69
70impl WithBatchIndexingDefaults for SparseEmbed {}
71impl WithIndexingDefaults for SparseEmbed {}
72
73#[async_trait]
74impl BatchableTransformer for SparseEmbed {
75    /// Transforms a batch of `Node` objects by generating embeddings for them.
76    ///
77    /// # Parameters
78    ///
79    /// * `nodes` - A vector of `Node` objects to be transformed.
80    ///
81    /// # Returns
82    ///
83    /// An `IndexingStream` containing the transformed `Node` objects with their embeddings.
84    ///
85    /// # Errors
86    ///
87    /// If the embedding process fails, the function returns a stream with the error.
88    #[tracing::instrument(skip_all, name = "transformers.embed")]
89    async fn batch_transform(&self, mut nodes: Vec<Node>) -> IndexingStream {
90        // TODO: We should drop chunks that go over the token limit of the SparseEmbedModel
91
92        // EmbeddedFields grouped by node stored in order of processed nodes.
93        let mut embeddings_keys_groups = VecDeque::with_capacity(nodes.len());
94        // SparseEmbeddable data of every node stored in order of processed nodes.
95        let embeddables_data = nodes
96            .iter_mut()
97            .fold(Vec::new(), |mut embeddables_data, node| {
98                let embeddables = node.as_embeddables();
99                let mut embeddables_keys = Vec::with_capacity(embeddables.len());
100                for (embeddable_key, embeddable_data) in embeddables {
101                    embeddables_keys.push(embeddable_key);
102                    embeddables_data.push(embeddable_data);
103                }
104                embeddings_keys_groups.push_back(embeddables_keys);
105                embeddables_data
106            });
107
108        // SparseEmbeddings vectors of every node stored in order of processed nodes.
109        let mut embeddings = match self.embed_model.sparse_embed(embeddables_data).await {
110            Ok(embeddngs) => VecDeque::from(embeddngs),
111            Err(err) => return err.into(),
112        };
113
114        // Iterator of nodes with embeddings vectors map.
115        let nodes_iter = nodes.into_iter().map(move |mut node| {
116            let Some(embedding_keys) = embeddings_keys_groups.pop_front() else {
117                bail!("Missing embedding data");
118            };
119            node.sparse_vectors = embedding_keys
120                .into_iter()
121                .map(|embedded_field| {
122                    embeddings
123                        .pop_front()
124                        .map(|embedding| (embedded_field, embedding))
125                })
126                .collect();
127            Ok(node)
128        });
129
130        IndexingStream::iter(nodes_iter)
131    }
132
133    fn concurrency(&self) -> Option<usize> {
134        self.concurrency
135    }
136
137    fn batch_size(&self) -> Option<usize> {
138        self.batch_size
139    }
140}
141
142#[cfg(test)]
143mod tests {
144    use swiftide_core::indexing::{EmbedMode, EmbeddedField, Metadata, Node};
145    use swiftide_core::{
146        BatchableTransformer, MockSparseEmbeddingModel, SparseEmbedding, SparseEmbeddings,
147    };
148
149    use super::SparseEmbed;
150
151    use futures_util::StreamExt;
152    use mockall::predicate::*;
153    use test_case::test_case;
154
155    #[derive(Clone)]
156    struct TestData<'a> {
157        pub embed_mode: EmbedMode,
158        pub chunk: &'a str,
159        pub metadata: Metadata,
160        pub expected_embedables: Vec<&'a str>,
161        pub expected_vectors: Vec<(EmbeddedField, Vec<f32>)>,
162    }
163
164    #[test_case(vec![
165        TestData {
166            embed_mode: EmbedMode::SingleWithMetadata,
167            chunk: "chunk_1",
168            metadata: Metadata::from([("meta_1", "prompt_1")]),
169            expected_embedables: vec!["meta_1: prompt_1\nchunk_1"],
170            expected_vectors: vec![(EmbeddedField::Combined, vec![1f32])]
171        },
172        TestData {
173            embed_mode: EmbedMode::SingleWithMetadata,
174            chunk: "chunk_2",
175            metadata: Metadata::from([("meta_2", "prompt_2")]),
176            expected_embedables: vec!["meta_2: prompt_2\nchunk_2"],
177            expected_vectors: vec![(EmbeddedField::Combined, vec![2f32])]
178        }
179    ]; "Multiple nodes EmbedMode::SingleWithMetadata with metadata.")]
180    #[test_case(vec![
181        TestData {
182            embed_mode: EmbedMode::PerField,
183            chunk: "chunk_1",
184            metadata: Metadata::from([("meta_1", "prompt 1")]),
185            expected_embedables: vec!["chunk_1", "prompt 1"],
186            expected_vectors: vec![
187                (EmbeddedField::Chunk, vec![10f32]),
188                (EmbeddedField::Metadata("meta_1".into()), vec![11f32])
189            ]
190        },
191        TestData {
192            embed_mode: EmbedMode::PerField,
193            chunk: "chunk_2",
194            metadata: Metadata::from([("meta_2", "prompt 2")]),
195            expected_embedables: vec!["chunk_2", "prompt 2"],
196            expected_vectors: vec![
197                (EmbeddedField::Chunk, vec![20f32]),
198                (EmbeddedField::Metadata("meta_2".into()), vec![21f32])
199            ]
200        }
201    ]; "Multiple nodes EmbedMode::PerField with metadata.")]
202    #[test_case(vec![
203        TestData {
204            embed_mode: EmbedMode::Both,
205            chunk: "chunk_1",
206            metadata: Metadata::from([("meta_1", "prompt 1")]),
207            expected_embedables: vec!["meta_1: prompt 1\nchunk_1", "chunk_1", "prompt 1"],
208            expected_vectors: vec![
209                (EmbeddedField::Combined, vec![10f32]),
210                (EmbeddedField::Chunk, vec![11f32]),
211                (EmbeddedField::Metadata("meta_1".into()), vec![12f32])
212            ]
213        },
214        TestData {
215            embed_mode: EmbedMode::Both,
216            chunk: "chunk_2",
217            metadata: Metadata::from([("meta_2", "prompt 2")]),
218            expected_embedables: vec!["meta_2: prompt 2\nchunk_2", "chunk_2", "prompt 2"],
219            expected_vectors: vec![
220                (EmbeddedField::Combined, vec![20f32]),
221                (EmbeddedField::Chunk, vec![21f32]),
222                (EmbeddedField::Metadata("meta_2".into()), vec![22f32])
223            ]
224        }
225    ]; "Multiple nodes EmbedMode::Both with metadata.")]
226    #[test_case(vec![
227        TestData {
228            embed_mode: EmbedMode::Both,
229            chunk: "chunk_1",
230            metadata: Metadata::from([("meta_10", "prompt 10"), ("meta_11", "prompt 11"), ("meta_12", "prompt 12")]),
231            expected_embedables: vec!["meta_10: prompt 10\nmeta_11: prompt 11\nmeta_12: prompt 12\nchunk_1", "chunk_1", "prompt 10", "prompt 11", "prompt 12"],
232            expected_vectors: vec![
233                (EmbeddedField::Combined, vec![10f32]),
234                (EmbeddedField::Chunk, vec![11f32]),
235                (EmbeddedField::Metadata("meta_10".into()), vec![12f32]),
236                (EmbeddedField::Metadata("meta_11".into()), vec![13f32]),
237                (EmbeddedField::Metadata("meta_12".into()), vec![14f32]),
238            ]
239        },
240        TestData {
241            embed_mode: EmbedMode::Both,
242            chunk: "chunk_2",
243            metadata: Metadata::from([("meta_20", "prompt 20"), ("meta_21", "prompt 21"), ("meta_22", "prompt 22")]),
244            expected_embedables: vec!["meta_20: prompt 20\nmeta_21: prompt 21\nmeta_22: prompt 22\nchunk_2", "chunk_2", "prompt 20", "prompt 21", "prompt 22"],
245            expected_vectors: vec![
246                (EmbeddedField::Combined, vec![20f32]),
247                (EmbeddedField::Chunk, vec![21f32]),
248                (EmbeddedField::Metadata("meta_20".into()), vec![22f32]),
249                (EmbeddedField::Metadata("meta_21".into()), vec![23f32]),
250                (EmbeddedField::Metadata("meta_22".into()), vec![24f32])
251            ]
252        }
253    ]; "Multiple nodes EmbedMode::Both with multiple metadata.")]
254    #[test_case(vec![]; "No ingestion nodes")]
255    #[tokio::test]
256    async fn batch_transform(test_data: Vec<TestData<'_>>) {
257        let test_nodes: Vec<Node> = test_data
258            .iter()
259            .map(|data| {
260                Node::builder()
261                    .chunk(data.chunk)
262                    .metadata(data.metadata.clone())
263                    .embed_mode(data.embed_mode)
264                    .build()
265                    .unwrap()
266            })
267            .collect();
268
269        let expected_nodes: Vec<Node> = test_nodes
270            .clone()
271            .into_iter()
272            .zip(test_data.iter())
273            .map(|(mut expected_node, test_data)| {
274                expected_node.sparse_vectors = Some(
275                    test_data
276                        .expected_vectors
277                        .iter()
278                        .cloned()
279                        .map(|d| {
280                            (
281                                d.0,
282                                SparseEmbedding {
283                                    indices: vec![0],
284                                    values: d.1,
285                                },
286                            )
287                        })
288                        .collect(),
289                );
290                expected_node
291            })
292            .collect();
293
294        let expected_embeddables_batch = test_data
295            .clone()
296            .iter()
297            .flat_map(|d| &d.expected_embedables)
298            .map(ToString::to_string)
299            .collect::<Vec<String>>();
300
301        let expected_vectors_batch: SparseEmbeddings = test_data
302            .clone()
303            .iter()
304            .flat_map(|d| {
305                d.expected_vectors
306                    .iter()
307                    .map(|(_, v)| v)
308                    .cloned()
309                    .map(|v| SparseEmbedding {
310                        indices: vec![0],
311                        values: v,
312                    })
313            })
314            .collect();
315
316        let mut model_mock = MockSparseEmbeddingModel::new();
317        model_mock
318            .expect_sparse_embed()
319            .withf(move |embeddables| expected_embeddables_batch.eq(embeddables))
320            .times(1)
321            .returning_st(move |_| Ok(expected_vectors_batch.clone()));
322
323        let embed = SparseEmbed::new(model_mock);
324
325        let mut stream = embed.batch_transform(test_nodes).await;
326
327        for expected_node in expected_nodes {
328            let ingested_node = stream
329                .next()
330                .await
331                .expect("IngestionStream has same length as expected_nodes")
332                .expect("Is OK");
333
334            debug_assert_eq!(ingested_node, expected_node);
335        }
336    }
337
338    #[tokio::test]
339    async fn test_returns_error_properly_if_sparse_embed_fails() {
340        let test_nodes = vec![Node::new("chunk")];
341        let mut model_mock = MockSparseEmbeddingModel::new();
342        model_mock
343            .expect_sparse_embed()
344            .times(1)
345            .returning(|_| Err(anyhow::anyhow!("error")));
346        let embed = SparseEmbed::new(model_mock);
347        let mut stream = embed.batch_transform(test_nodes).await;
348        let error = stream
349            .next()
350            .await
351            .expect("IngestionStream has same length as expected_nodes")
352            .expect_err("Is Err");
353
354        assert_eq!(error.to_string(), "error");
355    }
356}