pub struct SublinearNeumannSolver { /* private fields */ }Expand description
Sublinear Neumann solver with guaranteed O(log n) complexity
Implementations§
Source§impl SublinearNeumannSolver
impl SublinearNeumannSolver
pub fn new(config: SublinearConfig) -> Self
Sourcepub fn verify_sublinear_conditions(
&self,
matrix: &[Vec<Precision>],
) -> Result<ComplexityBound>
pub fn verify_sublinear_conditions( &self, matrix: &[Vec<Precision>], ) -> Result<ComplexityBound>
Verify sublinear conditions for matrix
Sourcepub fn solve_sublinear_guaranteed(
&self,
matrix: &[Vec<Precision>],
b: &[Precision],
) -> Result<SublinearNeumannResult>
pub fn solve_sublinear_guaranteed( &self, matrix: &[Vec<Precision>], b: &[Precision], ) -> Result<SublinearNeumannResult>
Solve with guaranteed sublinear complexity
Auto Trait Implementations§
impl Freeze for SublinearNeumannSolver
impl RefUnwindSafe for SublinearNeumannSolver
impl Send for SublinearNeumannSolver
impl Sync for SublinearNeumannSolver
impl Unpin for SublinearNeumannSolver
impl UnwindSafe for SublinearNeumannSolver
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.