pub struct Weibull { /* private fields */ }
Expand description
§The Weibull Distribution
§Description
Density, distribution function, quantile function and random generation for the Weibull distribution with parameters shape and scale.
§Arguments
- shape, scale: shape and scale parameters, the latter defaulting to 1.
§Details
The Weibull distribution with shape parameter a and scale parameter b has density given by
$ f(x) = (a/b) (x/b)^{a-1} exp(- (x/b)^a) $
for x > 0. The cumulative distribution function is $F(x) = 1 - exp(- (x/b)^a)$ on x > 0, the mean is $E(X) = b \Gamma(1 + 1/a)$, and the $Var(X) = b^2 * (\Gamma(1 + 2/a) - (\Gamma(1 + 1/a))^2)$.
§Density Plot
let weibull = WeibullBuilder::new().build();
let x = <[f64]>::sequence(-1.0, 5.0, 1000);
let y = x
.iter()
.map(|x| weibull.density(x).unwrap())
.collect::<Vec<_>>();
let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
Plot::new()
.with_options(PlotOptions {
x_axis_label: "x".to_string(),
y_axis_label: "density".to_string(),
..Default::default()
})
.with_plottable(Line {
x,
y,
color: BLACK,
..Default::default()
})
.plot(&root)
.unwrap();
§Note
The cumulative hazard $H(t) = - log(1 - F(t))$ is
-pweibull(t, a, b, lower = FALSE, log = TRUE) which is just $H(t) = (t/b)^a$.
§Source
[dpq]weibull are calculated directly from the definitions. rweibull uses inversion.
References Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
§See Also
Distributions for other standard distributions, including the Exponential which is a special case of the Weibull distribution.
§Examples
Using this x for everything below
let mut rng = MersenneTwister::new();
rng.set_seed(1);
let lnorm = LogNormalBuilder::new().build();
let mut x = (0..50)
.map(|_| lnorm.random_sample(&mut rng).unwrap())
.collect::<Vec<_>>();
x.insert(0, 0.0);
let weibull = WeibullBuilder::new().with_shape(1).build();
let r1 = x
.iter()
.map(|x| weibull.density(x).unwrap())
.collect::<Vec<_>>();
let exp = ExponentialBuilder::new().build();
let r2 = x
.iter()
.map(|x| exp.density(x).unwrap())
.collect::<Vec<_>>();
println!("{r1:?}");
println!("{r2:?}");
let weibull = WeibullBuilder::new()
.with_shape(1)
.with_scale(f64::PI())
.build();
let r1 = x
.iter()
.map(|x| weibull.probability(x, true).unwrap())
.collect::<Vec<_>>();
let exp = ExponentialBuilder::new().with_rate(1.0 / f64::PI()).build();
let r2 = x
.iter()
.map(|x| exp.probability(x, true).unwrap())
.collect::<Vec<_>>();
println!("{r1:?}");
println!("{r2:?}");
Cumulative hazard H()
let weibull = WeibullBuilder::new()
.with_shape(2.5)
.with_scale(f64::PI())
.build();
let r1 = x
.iter()
.map(|x| weibull.log_probability(x, false).unwrap())
.collect::<Vec<_>>();
let r2 = x
.iter()
.map(|x| -(x / f64::PI()).powf(2.5))
.collect::<Vec<_>>();
println!("{r1:?}");
println!("{r2:?}");
let weibull = WeibullBuilder::new()
.with_shape(1)
.with_scale(f64::PI())
.build();
let r1 = x
.iter()
.map(|x| weibull.quantile(x / 11.0, true).unwrap())
.collect::<Vec<_>>();
let exp = ExponentialBuilder::new().with_rate(1.0 / f64::PI()).build();
let r2 = x
.iter()
.map(|x| exp.quantile(x / 11.0, true).unwrap())
.collect::<Vec<_>>();
println!("{r1:?}");
println!("{r2:?}");
Trait Implementations§
Source§impl Distribution for Weibull
impl Distribution for Weibull
Source§fn log_density<R>(&self, x: R) -> NonNan<f64>
fn log_density<R>(&self, x: R) -> NonNan<f64>
Source§fn probability<R>(
&self,
q: R,
lower_tail: bool,
) -> GreaterThanEqualZero<LessThanEqualOne<NonNan<f64>>>
fn probability<R>( &self, q: R, lower_tail: bool, ) -> GreaterThanEqualZero<LessThanEqualOne<NonNan<f64>>>
Source§fn log_probability<R>(
&self,
q: R,
lower_tail: bool,
) -> LessThanEqualZero<NonNan<f64>>
fn log_probability<R>( &self, q: R, lower_tail: bool, ) -> LessThanEqualZero<NonNan<f64>>
Source§fn quantile<P>(&self, p: P, lower_tail: bool) -> NonNan<f64>
fn quantile<P>(&self, p: P, lower_tail: bool) -> NonNan<f64>
Auto Trait Implementations§
impl Freeze for Weibull
impl RefUnwindSafe for Weibull
impl Send for Weibull
impl Sync for Weibull
impl Unpin for Weibull
impl UnwindSafe for Weibull
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.